

IT8781F

Environment Control – Low Pin Count Input / Output (EC - LPC I/O)

Preliminary Specification V0.2.2

(For A Version)

ITE TECH. INC.

Copyright © 2012 ITE Tech. Inc.

This is Preliminary document release. All specifications are subject to change without notice.

The material contained in this document supersedes all previous documentation issued for the related products included herein. Please contact ITE Tech. Inc. for the latest document(s).

All sales are subject to ITE's Standard Terms and Conditions, a copy of which is included in the back of this document.

ITE, IT8781F is a trademark of ITE Tech. Inc.

All other trademarks are claimed by their respective owners.

All specifications are subject to change without notice.

Additional copies of this manual or other ITE literature may be obtained from:

ITE Tech. Inc. Phone: (02) 29126889

Marketing Department Fax: (02) 2910-2551, 2910-2552

7F, No. 233-1, Baociao Rd., Sindian City, Taipei County 23145, Taiwan, R.O.C.

If you have any marketing or sales questions, please contact:

P.Y. Chang, at ITE Taiwan: E-mail: p.y.chang@ite.com.tw, Tel: 886-2-29126889 X6052,

Fax: 886-2-29102551

To find out more about ITE, visit our World Wide Web at:

http://www.ite.com.tw

Or e-mail itesupport@ite.com.tw for more product information/services

Revision History

Section	Revision	Page No.
-	For registers without default values, note regarding its impact on VIN,	-
	TEMP, and FAN's detection and way to prevent it added.	

CONTENTS

1.	Featu	ıres	1
2.	Gene	eral Description	3
3.	Block	Diagram	5
4.	Pin C	Configuration	7
		31F Pin Descriptions	
		of GPIO Pins	
		er On Strapping Options and Special Pin Routings	
		guration	
Ο.	8.1	Configuring Sequence Description.	
	8.2	Description of Configuration Registers	
	·-	8.2.1 Logical Device Base Address	
	8.3	Global Configuration Registers (LDN: All)	
		8.3.1 Configure Control (Index=02h)	
		8.3.2 Logical Device Number (LDN, Index=07h)	
		8.3.3 Chip ID Byte 1 (Index=20h, Default=87h)	
		8.3.4 Chip ID Byte 2 (Index=21h, Default=81h)	
		8.3.5 Configuration Select and Chip Version (Index=22h, Default=00h)	
		8.3.6 Clock Selection Register (Index=23h, Default=00h)	
		8.3.7 Software Suspend and Flash I/F Control Register (Index=24h, Default=0000s0s0b, M	
		PnP)	
		8.3.8 GPIO Set 1 Multi-function Pin Selection Register (Index=25h, Default=01h)	
		8.3.9 GPIO Set 2 Multi-Function Pin Selection Register (Index=26h, Default=00h)	
		8.3.10 GPIO Set 3 Multi-Function Pin Selection Register (Index=27h, Default=00h)	
		8.3.11 GPIO Set 4 Multi-Function Pin Selection Register (Index=28h, Default=40h)	40
		8.3.12 GPIO Set 5 Multi-Function Pin Selection Register (Index=29h, Default=00h)	41
		8.3.13 Extended 1 Multi-Function Pin Selection Register (Index=2Ah, Default=00h)	42
		8.3.14 Logical Block Lock Register (Index=2Bh, Default=00h)	43
		8.3.15 Extended 2 Multi-Function Pin Selection Register (Index=2Ch, Default=03h)	43
		8.3.16 Test 1 Register (Index=2Eh, Default=00h)	44
		8.3.17 Test 2 Register (Index=2Fh, Default=00h)	44
	8.4	FDC Configuration Registers (LDN=00h)	45
		8.4.1 FDC Activate (Index=30h, Default=00h)	
		8.4.2 FDC Base Address MSB Register (Index=60h, Default=03h)	45
		8.4.3 FDC Base Address LSB Register (Index=61h, Default=F0h)	45
		8.4.4 FDC Interrupt Level Select (Index=70h, Default=06h)	
		8.4.5 FDC DMA Channel Select (Index=74h, Default=02h)	45
		8.4.6 FDC Special Configuration Register 1 (Index=F0h, Default=00h)	45
		8.4.7 FDC Special Configuration Register 2 (Index=F1h, Default=00h)	
	8.5	Serial Port 1 Configuration Registers (LDN=01h)	
		8.5.1 Serial Port 1 Activate (Index=30h, Default=00h)	
		8.5.2 Serial Port 1 Base Address MSB Register (Index=60h, Default=03h)	
7		8.5.3 Serial Port 1 Base Address LSB Register (Index=61h, Default=F8h)	
		8.5.4 Serial Port 1 Interrupt Level Select (Index=70h, Default=04h)	
		8.5.5 Serial Port 1 Special Configuration Register 1 (Index=F0h, Default=00h)	
	8.6	Serial Port 2 Configuration Registers (LDN=02h)	
		8.6.1 Serial Port 2 Activate (Index=30h, Default=00h)	
		8.6.2 Serial Port 2 Base Address MSB Register (Index=60h, Default=02h)	
		8.6.3 Serial Port 2 Base Address LSB Register (Index=61h, Default=F8h)	48

	8.6.4	Serial Port 2 Interrupt Level Select (Index=70h, Default=03h)	
	8.6.5	Serial Port 2 Special Configuration Register 1 (Index=F0h, Default=00h)	
8.7		Port Configuration Registers (LDN=03h)	49
	8.7.1	Parallel Port Activate (Index=30h, Default=00h)	49
	8.7.2	Parallel Port Primary Base Address MSB Register (Index=60h, Default=03h)	
	8.7.3	Parallel Port Primary Base Address LSB Register (Index=61h, Default=78h)	
	8.7.4	Parallel Port Secondary Base Address MSB Register (Index=62h, Default=07h)	
	8.7.5	Parallel Port Secondary Base Address LSB Register (Index=63h, Default=78h)	
	8.7.6	Parallel Port Interrupt Level Select (Index =70h, Default=07h)	
	8.7.7	Parallel Port DMA Channel Select (Index=74h, Default=03h)	50
	8.7.8	Parallel Port Special Configuration Register (Index=F0h, Default=03h)	50
8.8		ment Controller Configuration Registers (LDN=04h)	
	8.8.1	Environment Controller Activate Register (Index=30h, Default=00h)	
	8.8.2	Environment Controller Base Address MSB Register (Index=60h, Default=02h)	
	8.8.3	Environment Controller Base Address LSB Register (Index=61h, Default=90h)	
	8.8.4	PME Direct Access Base Address MSB Register (Index=62h, Default=02h)	
	8.8.5	PME Direct Access Base Address LSB Register (Index=63h, Default=30h)	
	8.8.6	Environment Controller Interrupt Level Select (Index=70h, Default=09h)	
	8.8.7	APC/PME Event Enable Register (PER) (Index=F0h, Default=00h)	
	8.8.8	APC/PME Status Register (PSR) (Index=F1h, Default=00h)	
	8.8.9	APC/PME Control Register 1 (PCR 1) (Index=F2h, Default=00h)	
		Environment Controller Special Configuration Register (Index=F3h, Default=00h)	
	8.8.11	APC/PME Control Register 2 (PCR 2) (Index=F4h, Default=00h)	53
	8.8.12	APC/PME Special Code Index Register (Index=F5h)	54
0.0		APC/PME Special Code Data Register (Index=F6h)	
8.9	8.9.1	eyboard) Configuration Registers (LDN=05h)	
	8.9.2	KBC (keyboard) Data Base Address MSB Register (Index=60h, Default=00h)	
	8.9.3	KBC (keyboard) Data Base Address INSB Register (Index=601, Default=601)	
	8.9.4	KBC (keyboard) Command Base Address MSB Register (Index=62h, Default=00h)	
	8.9.5	KBC (keyboard) Command Base Address LSB Register (Index=63h, Default=64h)	
	8.9.6	KBC (keyboard) Interrupt Level Select (Index=70h, Default=01h)	
	8.9.7	KBC (keyboard) Interrupt Type (Index=71h, Default=02h)	
	8.9.8	KBC (keyboard) Special Configuration Register (Index=F0h, Default=08h)	
8.10		nouse) Configuration Registers (LDN=06h)	
0.10		KBC (mouse) Activate (Index=30h, Default=00h)	
		KBC (mouse) Interrupt Level Select (Index=70h, Default=0Ch)	
		KBC (mouse) Interrupt Type (Index=71h, Default=02h)	
		KBC (mouse) Special Configuration Register (Index=F0h, Default=00h)	
8.11		Configuration Registers (LDN=07h)	
		SMI# Normal Run Access Base Address MSB Register (Index=60h, Default=00h)	
	8.11.2	SMI# Normal Run Access Base Address LSB Register (Index=61h, Default=00h)	58
		Simple I/O Base Address MSB Register (Index=62h, Default=00h)	
		Simple I/O Base Address LSB Register (Index=63h, Default=00h)	
	8.11.5	Serial Flash I/F Base Address MSB Register (Index=64h, Default=00h)	58
		Serial Flash I/F Base Address LSB Register (Index=65h, Default=00h)	
		Panel Button De-bounce Interrupt Level Select Register (Index=70h, Default=00h)	
		Watch Dog Timer 1, 2, 3 Control Register (Index=71h,81h,91h Default=00h)	
		Watch Dog Timer 1, 2, 3 Configuration Register (Index=72h, 82h, 92h Default=001s000	
		Watch Dog Timer 1,2,3 Time-Out Value (LSB) Register (Index=73h,83h,93h, Default=3	
		Watch Dog Timer 1,2,3 Time-Out Value (MSB) Register (Index=74h,84h,94h Default=0	
	8.11.12	PGPIO Pin Set 1, 2, 3, 4, and 5 Polarity Registers (Index=B0h, B1h, B2h, B3h, and B4h,	
		Default=00h)	60

			Pin Set 1, 2, 3, 4, and 5 Pin Internal Pull-up Enable Registers (Index=B8n, B9n,	
		BBh, a	and BCh, Default=20h, 00h, 00h, 00h, 00h, and 00h)	60
		8.11.14 Simple	e I/O Set 1, 2, 3, 4 and 5 Enable Registers (Index=C0h, C1h, C2h, C3h, and C4h	١,
		Defaul	t=01h, 00h, 00h, 40h, 00h and 00h)	60
		8.11.15 Simple	e I/O Set 1, 2, 3, 4, and 5Output Enable Registers (Index=C8h, C9h, CAh, CBh, a	and
		CCh D	Default=01h, 00h, 00h, 40h, and 00h)	60
		8.11.16 Panel	Button De-bounce 0 Input Pin Mapping Registers (Index=E0h, Default=00h)	60
		8.11.17 Panel	Button De-bounce 1 Input Pin Mapping Registers (Index=E1h, Default=00h)	61
		8.11.18 IRQ Ex	xternal Routing 1-0 Input Pin Mapping Registers (Index=E3h-E2h, Default=00h) .	61
		8.11.19 IRQ Ex	xternal Routing 1-0 Interrupt Level Selection Register (Index=E4h, Default=00h).	61
			unction Pin Selection Register (Index=EFh, Default=03h)	
		8.11.21 SMI# (Control Register 1 (Index=F0h, Default=00h)	61
			Control Register 2 (Index=F1h, Default=00h)	
			Status Register 1 (Index=F2h, Default=00h)	
		8.11.24 SMI# S	Status Register 2 (Index=F3h, Default=00h)	63
		8.11.25 SMI# F	Pin Mapping Register (Index=F4h, Default=00h)	63
			are Monitor Thermal Output Pin Mapping Register (Index=F5h, Default=00h)	
			are Monitor Alert Beep Pin Mapping Register (Index=F6h, Default=00h)	
			ard Lock Pin Mapping Register (Index=F7h, Default=00h)	
			D Blinking 1 Pin Mapping Register (Index=F8h, Default=00h)	
		8.11.30 GP LE	D Blinking 1 Control Register (Index=F9h, Default=00h)	64
			D Blinking 2 Pin Mapping Register (Index=FAh, Default=00h)	
			D Blinking 2 Control Register (Index=FBh, Default=00h)	
	8.12		Configuration Registers (LDN=08h,09h)	
	0.12		Port 3,4 Activate (Index=30h, Default=00h)	
			Port 3,4 Base Address MSB Register (Index=60h, Default=03h,02h)	
			Port 3,4 Base Address LSB Register (Index=61h, Default=00h)	
			Port 3,4 Interrupt Level Select (Index=70h, Default=04h, 03h)	
			Port 3,4 Special Configuration Register 1 (Index=F0h, Default=00h)	
			Port 3,4 Special Configuration Register 2 (Index=F1h, Default=50h)	
			Port 3,4 Special Configuration Register 3 (Index=F2h, Default=00h)	
			Port 3,4 Special Configuration Register 4 (Index=F3h, Default=7Fh)	
^	Funct		n	
9.		•		
	9.1			
			ransactions	
			# Encoding	
	9.2			
			uous Mode	
			Mode	
			orm Samples of SERIRQ Sequence	
			RQ Sampling Slot	
	9.3		ose I/O	
	9.4		ver Supply Control and Power Management Event (PME#)	
	9.5		sh Controller	
			ew	
			es	
			er Description	
		9.5.3.1	Control Register (SPI_CTRL)	
		9.5.3.2	Command Register (SPI_CMD)	
		9.5.3.3	Address 0 Register (SPI_ADDR0)	
		9.5.3.4	Address 1 Register (SPI_ADDR1)	
		9.5.3.5	Address 2 Register (SPI_ADDR2)	78

	9.5.3.6	Input Data 0 F	Register (SPI_ID	OATA0)			79
	9.5.3.7	Input Data 1 F	Register (SPI_ID)ATA1)			79
	9.5.3.8	Output Data/I	nput Data 2 Reg	gister (SPI_0	ODATA/ SPI_	_IDATA2)	79
		on Descriptions					79
9.6							
	•						
	9.6.2.1						
	9.6.2.2						
		9.6.2.2.1				fault=18h)	
		9.6.2.2.2				Default=00h)	
		9.6.2.2.3				Default=00h)	
		9.6.2.2.4				Default=00h)	
		9.6.2.2.5				ault=00h)	
		9.6.2.2.6				ault=00h)	
		9.6.2.2.7				ault=00h)	
		9.6.2.2.8				Default=00h)	
		9.6.2.2.9				Default=00h)	
		9.6.2.2.10				Default=80h)	
		9.6.2.2.11				h, Default=54h).	
		9.6.2.2.12 Default=09h)		ourning Step	riequency S	Selection Registe	er (maex-obn,
		9.6.2.2.13		oter 16 bit	Counter E	nable Register	· (Index=0Ch
		Default=00h		eter 10-bit	Counter	illable Register	(IIIdex-OCII,
		9.6.2.2.14		or 1-3 Read	ding Registers	s (Index=0Dh-0F	=h) 90
		9.6.2.2.15				ndex=10h-12h)	
		9.6.2.2.16				ndex=13h, Defa	
		9.6.2.2.17				, Default=50h)	
		9.6.2.2.18				Register	
			/20h/40h/60h)				90
		9.6.2.2.19	FAN CTL2	PWM	Control	Register	(Index=16h,
		Default=00h/	/20h/40h/60h)			Register	91
		9.6.2.2.20	FAN CTL3	PWM	Control	Register	(Index=17h,
		Default=00h/	/20h/40h/60h)				91
		9.6.2.2.21	Fan Tachomet	ter 1-3 Exte	ended Readir	ng Registers (In	idex=18h-1Ah)
			91				
		9.6.2.2.22				egisters (Index=	
		9.6.2.2.23				(Index=27h-20h	
		9.6.2.2.24				:=28h)	
		9.6.2.2.25				sters (Index=2Bh	
		9.6.2.2.26		imit Registe	ers (Index=3F	Fh, 3Dh, 3Bh, 3	39h, 37h, 35h,
		33h, 31h)	92				
		9.6.2.2.27				44h, 42h, 40h) .	
		9.6.2.2.28				45h, 43h, 41h)	
		9.6.2.2.29				(Index=50h, De	
		9.6.2.2.30	ADC Tempe	erature Ci	hannel Ena	able Register	(Index=51h,
		Default=00h)	,	hormal O	utout limit	Dogiotoro (la	adov=E4b E0b
		9.6.2.2.31		hermal O	utput Limit	Registers (Ir	iuex=5411-52N,
		Default=7Fh 9.6.2.2.32		atura Evtra	a Channel E	Enable Registe	r (Indev-55h
		Default=00h)		aluit EXII	a Challici E	Litable Negiste	i (iiiuex-55II,
		9.6.2.2.33		de Zero I	Degree Adii	ıst 1 Registei	r (Index=56h
		Default=00h)		0.0 L	- 5g. 55 / Kajo	.c	(

	9.6.2.2.34 Thermal Diode Zero Degree Adjust 2 Register (Index=57h Default=00h) 93	٦,
	9.6.2.2.35 Vendor ID Register (Index=58h, Default=90h)9	4
	9.6.2.2.36 Thermal Diode Zero Degree Adjust 3 Register (Index=59h	
	Default=00h) 94	Š
	9.6.2.2.37 Code ID Register (Index=5Bh, Default=12h)	4
	9.6.2.2.38 Beep Event Enable Register (Index=5Ch, Default=60h)9	
	9.6.2.2.39 Beep Frequency Divisor of Fan Event Register (Index=5Dr	
	Default=00h) 94	•,
	9.6.2.2.40 Beep Frequency Divisor of Voltage Event Register (Index=5Eh Default=00h) 95	٦,
	9.6.2.2.41 Beep Frequency Divisor of Temperature Event Register (Index=5Ft	_
	Default=00h) 95	١,
	9.6.2.2.42 FAN_CTL3-1 SmartGuardian Automatic Mode Temperature Limit of	٦f
	OFF Registers (Index=70h, 68h, 60h, Default=7Fh)9	
	9.6.2.2.43 FAN_CTL3-1 SmartGuardian Automatic Mode Temperature Limit of	
	Fan Start Registers (Index=71h, 69h, 61h, Default=7Fh)9	
	9.6.2.2.44 FAN CTL3-1 SmartGuardian Automatic Mode Start PWM Register	
	(Index=73h, 6Bh, 63h, Default=00h)9	
	9.6.2.2.45 FAN_CTL3-1 SmartGuardian Automatic Mode Control Register	
	(Index=74h, 6Ch, 64h, Default=00h)9	
	9.6.2.2.46 External Temperature Sensor Host Status Register (Index=88	
	Default=0000b)9	
	9.6.2.2.47 External Temperature Sensor Host Target Addess Registe	
	(Index=89h, Default=00h)9	
	9.6.2.2.48 External Temperature Sensor Host Write Length Register	
	(Index=8Ah, Default=00h)9	
	9.6.2.2.49 External Temperature Sensor Host Read Length Register	
	(Index=8Bh, Default=00h)9	
	9.6.2.2.50 External Temperature Sensor Host Command (Write Data 1	
	Register (Index=8Ch, Default=00h)9	
	9.6.2.2.51 External Temperature Sensor Write Data (2-8) Register (Index=8Df	
	Default=h) 98	,
	9.6.2.2.52 External Temperature Sensor Host Control Register (Index=8E	٦,
	Default=01h) 98	,
	9.6.3 Operation	9
	9.6.3.1 Power On RESET and Software RESET9	9
	9.6.3.2 Starting Conversion	
	9.6.3.3 Voltage and Temperature Inputs	0
	9.6.3.4 Layout and Grounding	1
	9.6.3.5 Fan Tachometer	1
	9.6.3.6 Interrupt of the EC	
	9.6.3.7 FAN Controller FAN_CTL's ON-OFF and SmartGuardian Modes	
).7	Floppy Disk Controller (FDC)	6
	9.7.1 Introduction	
	9.7.2 Reset	
	9.7.3 Hardware Reset (LRESET# Pin)	
	9.7.4 Software Reset (DOR Reset and DSR Reset)	
	9.7.5 Digital Data Separator	
	9.7.6 Write Precompensation	
	9.7.7 Data Rate Selection	
	9.7.8 Status, Data and Control Registers	
	9.7.8.1 Digital Output Register (DOR, FDC Base Address + 02h)	7

	9.7.8.2	Tape Drive Register (TDR, FDC Base Address + 03h)	
	9.7.8.3	Main Status Register (MSR, FDC Base Address + 04h)	108
	9.7.8.4	Data Rate Select Register (DSR, FDC Base Address + 04h)	108
	9.7.8.5	Data Register (FIFO, FDC Base Address + 05h)	
	9.7.8.6	Digital Input Register (DIR, FDC Base Address + 07h)	
	9.7.8.7	Diskette Control Register (DCR, FDC Base Address + 07h)	
		ller Phases	
	9.7.9.1	Command Phase	
	9.7.9.2	Execution Phase	
	9.7.9.3	Result Phase	
	9.7.9.4	Result Phase Status Registers	
		and Set	
		ransfer Command	
		Read Data	
		Read Deleted Data	
		Read A Track	
		Write Data	
		Write Deleted Data	
		Format A Track	
		Scan	
	9.7.11.8	Verify	126
		ol Command	
	9.7.12.1	Read ID	127
	9.7.12.2	Configure	127
	9.7.12.3	Re-calibrate	127
	9.7.12.4	Seek	127
		Relative Seek	
		Dumpreg	
		Lock	
		Version	
		Sense Interrupt Status	
		0 Sense Drive Status	
		1 Specify	
		2 Perpendicular Mode	
		3 Invalid	
		ransfers	
		ower Mode	
0.0			
9.8		ART) Description	
	9.8.1 Data R	Register (RBR and TBR)	131
		Register (IER, IIR, FCR, DLL, DLM, LCR and MCR)	
		Registers: LSR and MSR	
		mming	
		re Reset	
		Input Operation	
		nterrupt Mode Operation	
9.9		eader	
		es	
	9.9.2 Operat	tion	141
		ction of IFD to ICC Socket	
		Rate Relationship Between UART and Smart Card Interface	
	9.9.5 Wavef	orm Relationship	142
	9.9.6 Clock I	Divider .	142

9.9.7 Waveform Example of Activation/Deactivation Sequence	
9.9.8 ATR and PTS Structure	
9.9.9 Smart Card Operating Sequence Example	
9.10 Parallel Port	
9.10.1 SPP and EPP Modes	
9.10.2 EPP Mode Operation	
9.10.3 ECP Mode Operation	
9.11 Keyboard Controller (KBC)	
9.11.1 Host Interface	
9.11.2 Data Registers and Status Register	
9.11.3 Keyboard and Mouse Interface	
9.11.4 KIRQ and MIRQ	
10. DC Electrical Characteristics	
11. AC Characteristics (VCC = 5V ± 5%, Ta = 0°C to + 70°C)	159
11.1 Clock Input Timings	159
11.2 LCLK (PCICLK) and LRESET Timings	159
11.3 LPC and SERIRQ Timings	
11.4 Modem Control Timings	160
11.5 Floppy Disk Drive Timings	
11.6 EPP Address or Data Write Cycle Timings	162
11.7 EPP Address or Data Read Cycle Timings	163
11.8 ECP Parallel Port Forward Timings	164
11.9 ECP Parallel Port Backward Timings	
11.10 RSMRST#, PWROK, and ACPI Power Control Signals Timings	166
12. Package Information	
13. Ordering Information	169
14. Top Marking Information	171

FIGURES

Figure 4-1. IT8781F 128-QFP	7
Figure 7-1. IT8781F Special Applications Circuitry for Intel ICH	28
Figure 9-1. Start Frame Timing	72
Figure 9-2. Stop Frame Timing	72
Figure 9-3. General Logic of GPIO Function	75
Figure 9-4. Application Example	99
Figure 9-5. Temperature Interrupt Response Diagram	
Figure 9-6. SmartGuardian Automatic Mode	
Figure 9-7. Smart Card Reader Application	141
Figure 9-8. 9600 Baud Rate Example	142
Figure 9-9. Waveform Example of IFD	143
Figure 9-10. Keyboard and Mouse Interface	154
Figure 11-1. Clock Input Timings	
Figure 11-2. LCLK (PCICLK) and LRESET Timings	
Figure 11-3. LPC and SERIRQ Timings	
Figure 11-4. Modem Control Timings	160
Figure 11-5. Floppy Disk Drive Timings	
Figure 11-6. EPP Address or Data Write Cycle Timings	162
Figure 11-7. EPP Address or Data Read Cycle Timings	163
Figure 11-8. ECP Parallel Port Forward Timings	164
Figure 11-9. ECP Parallel Port Backward Timings	165

TABLES

Table 4-1. Pins Listed in Numeric Order	8
Table 4-2. Pins Listed in Alphabetical Order	9
Table 5-1. Pin Description of Supplies Signals	11
Table 5-2. Pin Description of LPC Bus Interface Signals	11
Table 5-3. Pin Description of Infrared Port Signals	11
Table 5-4. Pin Description of Serial Port 1 Signals	12
Table 5-5. Pin Description of Serial Port 2 Signals	12
Table 5-6. Pin Description of Serial Port 3 Signals	13
Table 5-7. Pin Description of Serial Port 4 Signals	14
Table 5-8. Pin Description of Parallel Port Signals	16
Table 5-9. Pin Description of Floppy Disk Controller Signals	17
Table 5-10. Pin Description of Keyboard Controller Signals	17
Table 5-11. Pin Description of Smart Card Reader Interface Signals	18
Table 5-12. Pin Description of Hardware Monitor Signals ^{Note1}	20
Table 5-13. Pin Description of Fan Controller Signals	20
Table 5-14. Pin Description of Miscellaneous Signals	21
Table 6-1. General Purpose I/O Group 1 (Set 1)	23
Table 6-2. General Purpose I/O Group 2 (Set 2)	23
Table 6-3. General Purpose I/O Group 3 (Set 3)	24
Table 6-4. General Purpose I/O Group 4 (Set 4)	24
Table 6-5. General Purpose I/O Group 5 (Set 5)	25
Table 6-6. General Purpose I/O Group 6 (Set 6)	25
Table 7-1. Power On Strapping Options	27
Table 8-1. Global Configuration Registers	30
Table 8-2. FDC Configuration Registers	31
Table 8-3. Serial Port 1 Configuration Registers	31
Table 8-4. Serial Port 2 Configuration Registers	31
Table 8-5. Parallel Port Configuration Registers	31
Table 8-6. Environment Controller Configuration Registers	32
Table 8-7. KBC(Keyboard) Configuration Registers	32
Table 8-8. KBC(Mouse) Configuration Registers	32
Table 8-9. GPIO Configuration Registers	33
Table 8-10. GPIO Configuration Registers	34
Table 8-11. Serial Port 3 Configuration Registers	35
Table 8-12. Serial Port 4 Configuration Registers	35
Table 8-13. Base Address of Logical Devices	36
Table 9-1 Memory Stick Register List	77

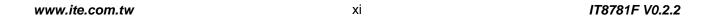


Table 9-2. Address Map on the LPC Bus	81
Table 9-3. Environment Controller Registers	82
Table 9-4. Digital Output Register (DOR)	107
Table 9-5. Tape Drive Register (TDR)	107
Table 9-6. Main Status Register (MSR)	108
Table 9-7. Data Rate Select Register (DSR)	108
Table 9-8. Data Register (FIFO)	109
Table 9-9. Digital Input Register (DIR)	110
Table 9-10. Diskette Control Register (DCR)	110
Table 9-11. Status Register 0 (ST0)	111
Table 9-12. Status Register 1 (ST1)	111
Table 9-13. Status Register 2 (ST2)	112
Table 9-14. Status Register 3 (ST3)	112
Table 9-15. Command Set Symbol Descriptions	113
Table 9-16. Command Set Summary	115
Table 9-17. Effects of MT and N Bits	123
Table 9-18. SCAN Command Result	125
Table 9-19. VERIFY Command Result	126
Table 9-20. Interrupt Identification	128
Table 9-21. HUT Value	129
Table 9-22. SRT Value	129
Table 9-23. HLT Value	129
Table 9-24. Effects of GAP and WG on FORMAT A TRACK and WRITE DATA Commands	130
Table 9-25. Effects of Drive Mode and Data Rate on FORMAT A TRACK and WRITE DATA Comma	ands 130
Table 9-26. Serial Channel Registers	131
Table 9-27. Interrupt Enable Register Description	132
Table 9-28. Interrupt Identification Register	133
Table 9-29. FIFO Control Register Description	134
Table 9-30. Receiver FIFO Trigger Level Encoding	134
Table 9-31. Baud Rate Using (24 MHz ÷ 13) Clock	135
Table 9-32. Line Control Register Description	136
Table 9-33. Stop Bit Number Encoding	136
Table 9-34. Modem Control Register Description	136
Table 9-35. Line Status Register Description	137
Table 9-36. Modem Status Register Description	138
Table 9-37. Reset Control of Register and Pinout Signal	139
Table 9-38. SCRCLK Selection	142
Table 9-39. Parallel Port Connector in Different Modes	145
Table 9-40, Address Map and Bit Map for SPP and EPP Modes	145

Table 9-41. Bit Map of the ECP Register	148
Table 9-42. ECP Register Definitions	148
Table 9-43. ECP Mode Description	149
Table 9-44. ECP Pin Description	149
Table 9-45. Extended Control Register (ECR) Mode and Description	
Table 9-46. Data Register READ/WRITE Controls	154
Table 9-47. Status Register	155

1. Features

■ Low Pin Count Interface

- Complies with Intel Low Pin Count Interface Specification Rev. 1.1
- Supports LDRQ#, SERIRQ protocols
- Supports PCI PME# Interfaces

■ ACPI & LANDesk Compliant

- ACPI V. 2.0 compliant
- Register sets compatible with "Plug and Play ISA Specification V. 1.0a"
- LANDesk 3.X compliant
- Supports 12 logical devices

■ Enhanced Hardware Monitor

- Built-in 8-bit Analog to Digital Converter
- 3 thermal inputs from remote thermal resistor or thermal diode or diode-connected transistor, the temperature sensor of the current mode
- 8 voltage monitor inputs (VBAT measured internally)
- 1 chassis open detection input with low power Flip-Flop backed by the battery
- Watch Dog comparison of all monitored values
- SST/PECI I/F support

■ Fan Speed Controller

- Provides fan on-off and PWM control
- Supports 3 programmable Pulse Width Modulation (PWM) outputs
- 128 steps of PWM modes
- Monitors 3 fan tachometer inputs

SmartGuardian Controller

Provides programmably automatic fan speed control

■ Four 16C550 UARTs

- Supports four standard Serial Ports
- Supports IrDA 1.0/ASKIR protocols

■ Smart Card Reader

- Compliant with Personal Computer Smart Card (PC/SC) Working Group standard
- Compliant with smart card (ISO 7816) protocols
- Supports card present detect
- Supports Smart Card insertion power-on feature
- Supports 3.5 MHz (Default) and 7.1 MHz card clocks plus one programmable clock frequency.

■ IEEE 1284 Parallel Port

- Standard mode -- Bi-directional SPP compliant

- Enhanced mode -- EPP V. 1.7 and V. 1.9 compliant
- High-speed mode -- ECP, IEEE 1284 compliant
- Back-drive current reduction
- Printer power-on damage reduction
- Supports POST (Power-On Self Test) Data Port

■ Floppy Disk Controller

- Supports two 360K/ 720K/ 1.2M/ 1.44M/ 2.88M floppy disk drives
- Enhanced digital data separator
- 3-Mode drives supported
- Supports automatic write protection via software

Keyboard Controller

- 8042 compatible for PS/2 keyboard and mouse
- Hardware KBC
- GateA20 and Keyboard reset output
- Supports Multiple keyboard power-on events (Any Key, 2-5 Sequential Keys, 1-3 simultaneous Keys)
- Supports mouse double-click and/or mouse move power on events

■ 42 General Purpose I/O Pins

- Input mode supports either switch de-bounce or programmable external IRQ input routing
- Output mode supports 2 sets of programmable LED blinking periods

■ Serial Flash I/F for BIOS

- Supports SPI I/F (8M)

■ Watch Dog Timer

- Time resolution 1 minute or 1 second, maximum 65535 minutes or 65535 seconds
- Output to KRST# and PWROK when expired

■ ITE's Innovative Automatic Power-failure Resume and Power Button De-bounce

- VCCH and Vbat Supported
- Single 24/48 MHz Clock Input
- Built-in 32.768 KHz Oscillator
- +5V/3.3V Power Supply
- 128-pin QFP

This page is intentionally left blank.

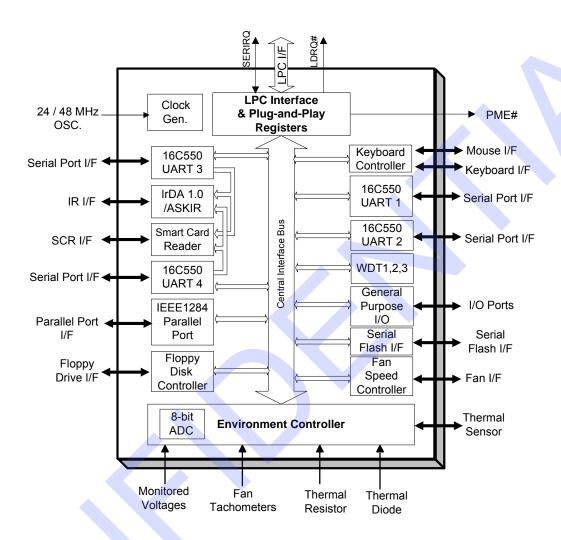
2. General Description

The IT8781F is a highly integrated Super I/O using the Low Pin Count Interface. The IT8781F provides the most commonly used legacy Super I/O functionality plus the latest Environment Control initiatives, including H/W Monitor, Fan Speed Controller. The device's LPC interface complies with Intel "LPC Interface Specification Rev. 1.1". The IT8781F is ACPI & LANDesk compliant.

The IT8781F features an enhanced hardware monitor providing 3 thermal inputs from remote thermal resistors, or thermal diode or diode-connected transistor (2N3904).

The fan speed controller can control up to three fan speeds through three separate 128 steps of Pulse Width Modulation (PWM) output pins and monitor up to three FANs' Tachometer inputs. It also features four 16C550 UARTs, one IEEE 1284 Parallel Port, one Floppy Disk Controller and one Keyboard Controller.

Integrated in the IT8781F are 10 logical devices. One high-performance 2.88MB floppy disk controller, with digital data separator, supporting two drives in 360K/ 720K/ 1.2M/ 1.44M/ 2.88M format. One multi-mode high-performance parallel port supporting the bi-directional Standard Parallel Port (SPP), the Enhanced Parallel Port (EPP V. 1.7 and EPP V. 1.9), and the IEEE 1284 compliant Extended Capabilities Port (ECP). Four 16C550 standard compatible enhanced UARTs perform asynchronous communication, and also support an IR interface. The device also features one fan speed controller which controls three and monitors five fans, and six GPIO ports controlling up to 42 GPIO pins. The IT8781F also has an integrated Keyboard Controller.


These 10 logical devices can be individually enabled or disabled via software configuration registers. The IT F utilizes power-saving circuitry to reduce power consumption, and once a logical device is disabled the inputs are inhibited with the clock disabled and the outputs are tri-stated. The device requires a single 24/48 MHz clock input and operates with +5V/3.3V power supply. The IT8781F is available in 128-pin QFP (Quad Flat Package).

This page is intentionally left blank.

3. Block Diagram

This page is intentionally left blank.

4. Pin Configuration

Figure 4-1. IT8781F 128-QFP

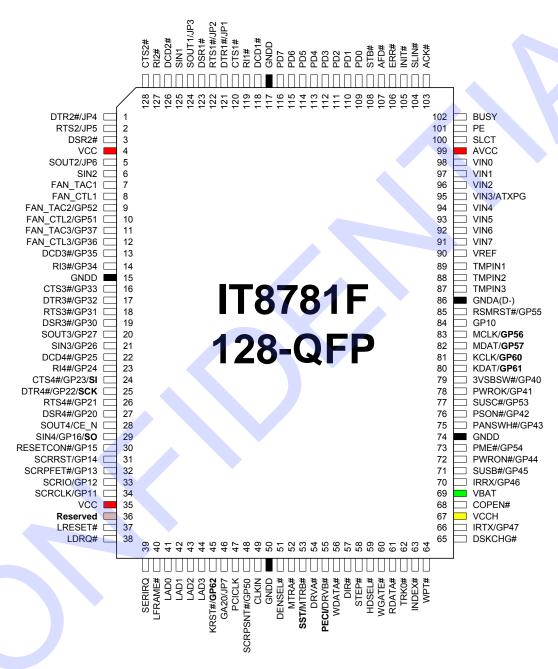


Table 4-1. Pins Listed in Numeric Order

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	DTR2#/JP4	33	SCRIO/GP12	65	DSKCHG#	97	VIN1
2	RTS2/JP5	34	SCRCLK/GP11	66	IRTX/GP47	98	VIN0
3	DSR2#	35	VCC	67	VCCH	99	AVCC
4	VCC	36	Reserved	68	COPEN#	100	SLCT
5	SOUT2/JP6	37	LRESET#	69	VBAT	101	PE
6	SIN2	38	LDREQ#	70	IRRX/GP46	102	BUSY
7	FAN_TAC1	39	SERIRQ	71	SUSB#/GP45	103	ACK#
8	FAN_CTL1	40	LFRAME#	72	PWRON#/GP44	104	SLIN#
9	FAN_TAC2/GP52	41	LAD0	73	PME#/GP54	105	INIT#
10	FAN_CTL2/GP51	42	LAD1	74	GNDD	106	ERR#
11	FAN_TAC3/GP37	43	LAD2	75	PANSWH#/GP43	107	AFD#
12	FAN_CTL3/GP36	44	LAD3	76	PSON#/GP42	108	STB#
13	DCD3#/GP35	45	KRST#/GP62	77	SUSC#/GP53	109	PD0
14	RI3#/GP34	46	GA20/JP7	78	PWROK/GP41	110	PD1
15	GNDD	47	PCICLK	79	3VSBSW#/GP40	111	PD2
16	CTS3#/GP33	48	SCRPSNT#/GP50	80	KDAT/GP61	112	PD3
17	DTR3#/GP32	49	CLKIN	81	KCLK/GP60	113	PD4
18	RTS3#/GP31	50	GNDD	82	MDAT/GP57	114	PD5
19	DSR3#/GP30	51	DENSEL#	83	MCLK/GP56	115	PD6
20	SOUT3/GP27	52	MTRA#	84	GP10	116	PD7
21	SIN3/GP26	53	SST/MTRB#	85	RSMRST#/GP55	117	GNDD
22	DCD4#/GP25	54	DRVA#	86	GNDA	118	DCD1#
23	RI4#/GP24	55	PECI/DRVB#	87	TMPIN3	119	RI1#
24	CTS4#/GP23/SI	56	WDATA#	88	TMPIN2	120	CTS1#
25	DTR4#/GP22/SC K	57	DIR#	89	TMPIN1	121	DTR1#/JP1
26	RTS4#/GP21	58	STEP#	90	VREF	122	RTS1#/JP2
27	DSR4#/GP20	59	HDSEL#	91	VIN7	123	DSR1#
28	SOUT4/CE_N	60	WGATE#	92	VIN6	124	SOUT1/JP3
29	SIN4/GP16/SO	61	RDATA#	93	VIN5	125	SIN1
30	RESETCON#/GP 15	62	TRK0#	94	VIN4	126	DCD2#
31	SCRRST/GP14	63	INDEX#	95	VIN3/ATXPG	127	RI2#
32	SCRPFET#/GP13	64	WPT#	96	VIN2	128	CTS2#

Table 4-2. Pins Listed in Alphabetical Order

Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin
ACK#	103	FAN_TAC2/GP52	9	PD6	115	SLIN#	104
AFD#	107	FAN_TAC3/GP37	11	PD7	116	SOUT1/JP3	124
AVCC	99	GA20/JP7	46	PE	101	SOUT2/JP6	5
BUSY	102	GNDA	86	PECI/DRVB#	55	SOUT3/GP27	20
CLKIN	49	GNDD	15	PME#/GP54	73	SOUT4/CE_N	28
COPEN#	68	GNDD	50	PSON#/GP42	76	IRTX/GP47	66
CTS1#	120	GNDD	74	PWRON#/GP44	72	GP10	84
CTS2#	128	GNDD	117	RDATA#	61	SST/MTRB#	53
CTS3#/GP33	16	HDSEL#	59	Reserved	36	STB#	108
CTS4#/GP23/SI	24	INDEX#	63	RESETCON#/GP 15	30	STEP#	58
DCD1#	118	INIT#	105	RI1#	119	SUSB#/GP45	71
DCD2#	126	KCLK/GP60	81	RI2#	127	SUSC#/GP53	77
DCD3#/GP35	13	KDAT/GP61	80	RI3#/GP34	14	TMPIN1	89
DCD4#/GP25	22	KRST#/GP62	45	RI4#/GP24	23	TMPIN2	88
DENSEL#	51	LAD0	41	RTS1#/JP2	122	TMPIN3	87
DIR#	57	LAD1	42	RTS2/JP5	2	TRK0#	62
DRVA#	54	LAD2	43	RTS3#/GP31	18	VBAT	69
DSKCHG#	65	LAD3	44	RTS4#/GP21	26	VCC	4
DSR1#	123	LDREQ#	38	3VSBSW#/GP40	79	VCC	35
DSR2#	3	LFRAME#	40	SCRCLK/GP11	34	VCCH	67
DSR3#/GP30	19	LRESET#	37	SCRIO/GP12	33	VIN0	98
DSR4#/GP20	27	MCLK/GP56	83	SCRPFET#/GP13	32	VIN1	97
DTR1#/JP1	121	MDAT/GP57	82	SCRPSNT#/GP50	48	VIN2	96
DTR2#/JP4	1	MTRA#	52	SCRRST/GP14	31	VIN3/ATXPG	95
DTR3#/GP32	17	PANSWH#/GP43	75	SERIRQ	39	VIN4	94
DTR4#/GP22/SC K	25	PCICLK	47	SIN1	125	VIN5	93
PWROK/GP41	78	PD0	109	SIN2	6	VIN6	92
ERR#	106	PD1	110	SIN3/GP26	21	VIN7	91
FAN_CTL1	8	PD2	111	SIN4/GP16/SO	29	VREF	90
FAN_CTL2/GP51	10	PD3	112	IRRX/GP46	70	WDATA#	56
FAN_CTL3/GP36	12	PD4	113	RSMRST#/GP55	85	WGATE#	60
FAN_TAC1	7	PD5	114	SLCT	100	WPT#	64

This page is intentionally left blank.

5. IT8781F Pin Descriptions

Table 5-1. Pin Description of Supplies Signals

Pin(s) No.	Symbol	Attribute	Power	Description
4, 35	VCC	PWR	-	+5V Power Supply
99	AVCC	PWR	-	+5V Analog Power Supply
67	VCCH	PWR	-	+5V VCC Help Supply
69	VBAT	PWR	-	+3.3V Battery Supply
36	Reserved	PWR	-	Reserved pin
15, 50,	GNDD	GND	-	Digital Ground
74, 117				
86	GNDA(D-)	GND	-	Analog Ground (D-)

Table 5-2. Pin Description of LPC Bus Interface Signals

Pin(s) No.	Symbol	Attribute	Power	Description
37	LRESET#	DI	VCC	LPC RESET # EC block will not be reset by LRESET#, which is controlled by VCC PWRGD.
38	LDRQ#	DO16	VCC	LPC DMA Request # An encoded signal for DMA channel select.
39	SERIRQ	DIO16	VCC	Serial IRQ.
40	LFRAME#	DI	VCC	LPC Frame #. This signal indicates the start of the LPC cycle.
41-44	LAD[0:3]	DIO16	VCC	LPC Address / Data 0-3. 4-bit LPC address/bi-directional data lines. LAD0 is the LSB and LAD3 is the MSB.
47	PCICLK	DI	VCC	PCI Clock. 33 MHz PCI clock input for LPC I/F and SERIRQ.
73	PME#/GP54	DOD8/ DIOD8	VCCH	Power Management Event # / General Purpose I/O 54. The first function of this pin is the power management event #. It supports the PCI PME# interface. This signal allows the peripheral to request the system to wake up from the D3 (cold) state. The second function of this pin is the General Purpose I/O Port 5 Bit 4. The function configuration of this pin is determined by programming the software configuration registers.

Table 5-3. Pin Description of Infrared Port Signals

Pin(s) No.	Symbol	Attribute	Power	Description
70	IRRX / GP46	DI/ DIOD8	VCCH	 Infrared Receive Input / General Purpose I/O 46 The first function of this pin is Infrared Receive Input. The second function of this pin is the General Purpose I/O Port 4 Bit 6 The function configuration of this pin is determined by programming the software configuration registers.
66	IRTX/ GP47	DO8/ DIOD8	VCC	 Infrared Transmit Output / General Purpose I/O 47. The first function of this pin is Infrared Transmit output The second function of this pin is the General Purpose I/O Port 4 Bit 7. The function configuration of this pin is determined by programming the software configuration registers.

Table 5-4. Pin Description of Serial Port 1 Signals

Pin(s) No.	Symbol	Attribute	Power	Description
125	SIN1	DI	VCC	Serial Data Input 1 This input receives serial data from the communications link.
124	SOUT1/ JP3	DO8/ DI	VCC	Serial Data Output 1 This output sends serial data to the communications link. This signal is set to a marking state (logic 1) after a Master Reset operation or when the device is in one of the Infrared communications modes. During LRESET#, this pin is input for JP3 power-on strapping option
123	DSR1#	DI	VCC	Data Set Ready 1 # When the signal is low, it indicates that the MODEM or data set is ready to establish a communications link. The DSR# signal is a MODEM status input whose condition can be tested by reading the MSR register.
122	RTS1#/ JP2	DO8/ DI	VCC	Request to Send 1 # When this signal is low, this output indicates to the MODEM or data set that the device is ready to send data. RTS# is activated by setting the appropriate bit in the MCR register to 1. After a Master Reset operation or during the Loop mode, RTS# is set to its inactive state.
121	DTR1#/ JP1	DO8/ DI	VCC	Data Terminal Ready 1 # DTR# is used to indicate to the MODEM or data set that the device is ready to exchange data. DTR# is activated by setting the appropriate bit in the MCR register to 1. After a Master Reset operation or during Loop mode, DTR# is set to its inactive state. During LRESET#, this pin is input for JP1 power-on strapping option
120	CTS1#	DI	VCC	Clear to Send 1 # When the signal is low, it indicates that the MODEM or data set is ready to accept data. The CTS# signal is a MODEM status input whose condition can be tested by reading the MSR register.
119	RI1#	DI	VCC	Ring Indicator 1 # When the signal is low, it indicates that a telephone ring signal has been received by the MODEM. The RI# signal is a MODEM status input whose condition can be tested by reading the MSR register.
118	DCD1#	DI	VCC	Data Carrier Detect 1 # When the signal is low, it indicates that the MODEM or data set has detected a carrier. The DCD# signal is a MODEM status input whose condition can be tested by reading the MSR register.

Table 5-5. Pin Description of Serial Port 2 Signals

			<u> </u>	
Pin(s) No.	Symbol	Attribute	Power	Description
6	SIN2	DI	VCC	Serial Data Input 2
				This input receives serial data from the communications link.
5	SOUT2/	DO8/	VCC	Serial Data Output 2
	JP6	DI		This output sends serial data to the communications link. This signal is set to a marking state (logic 1) after a Master Reset operation or when the device is in one of the Infrared communications modes.
3	DSR2#	DI	VCC	Data Set Ready 2 # When the signal is low, it indicates that the MODEM or data set is ready to establish a communications link. The DSR# signal is a MODEM status input whose condition can be

Pin Descriptions

Pin(s) No.	Symbol	Attribute	Power	Description
				tested by reading the MSR register.
2	RTS2#/ JP5	DO8/ DI	VCC	Request to Send 2 # When this signal is low, this output indicates to the MODEM or data set that the device is ready to send data. RTS# is activated by setting the appropriate bit in the MCR register to After a Master Reset operation or during Loop mode, RTS# is set to its inactive state. During LRESET#, this pin is input for JP5 power-on strapping option
1	DTR2#/ JP4	DO8/ DI	VCC	Data Terminal Ready 2 # DTR# is used to indicate to the MODEM or data set that the device is ready to exchange data. DTR# is activated by setting the appropriate bit in the MCR register to 1. After a Master Reset operation or during Loop mode, DTR# is set to its inactive state.
128	CTS2#	DI	VCC	Clear to Send 2 # When the signal is low, it indicates that the MODEM or data set is ready to accept data. The CTS# signal is a MODEM status input whose condition can be tested by reading the MSR register.
127	RI2#	DI	VCC	Ring Indicator 2 # When the signal is low, it indicates that a telephone ring signal has been received by the MODEM. The RI# signal is a MODEM status input whose condition can be tested by reading the MSR register.
126	DCD2#	DI	VCC	Data Carrier Detect 2 # When the signal is low, it indicates that the MODEM or data set has detected a carrier. The DCD# signal is a MODEM status input whose condition can be tested by reading the MSR register.

Table 5-6. Pin Description of Serial Port 3 Signals

Table 3-0.1 in Bescription of Serial Fort 3 digitals						
Pin(s) No.	Symbol	Attribute	Power	Description		
21	SIN3/ GP26	DI/ DIOD8	VCC	 Serial Data Input 3/General Purpose I/O 26 This first function of this pin is input receives serial data from the communications link. The second function of this pin is the General Purpose I/O Port 2 Bit 6. The function configuration of this pin is determined by programming the software configuration registers. 		
20	SOUT3/ GP27	DO8/ DIDO8	VCC	 Serial Data Output 3/General Purpose I/O 27 This first function of this pin is output sends serial data to the communications link. This signal is set to a marking state (logic 1) after a Master Reset operation or when the device is in one of the Infrared communications modes. The second function of this pin is the General Purpose I/O Port 2 Bit 7. The function configuration of this pin is determined by programming the software configuration registers. 		
19	DSR3#/ GP30	DI/ DIO8	VCC	Data Set Ready 3 # / General Purpose I/O 30 The first function of this pin is Data Set Ready 3#. When the signal is low, it indicates that the MODEM or data set is ready to establish a communications link. The DSR# signal is a MODEM status input whose condition can be tested by reading the MSR register. The second function of this pin is the General Purpose I/O Port 3 Bit 0. The function configuration of this pin is determined by programming the software configuration registers.		

www.ite.com.tw 13 IT8781F V0.2.2

Pin(s) No.	Symbol	Attribute	Power	Description
18	RTS3#/	DO8/	VCC	Request to Send 3 #/ General Purpose I/O 31
	GP31	DIO8		 The first function of this pin is Request to Send 3#. When this signal is low, this output indicates to the MODEM or data set that the device is ready to send data. RTS# is activated by setting the appropriate bit in the MCR register to 1. After a Master Reset operation or during Loop mode, RTS# is set to its inactive state. The second function of this pin is the General Purpose I/O Port 3 Bit 1. The function configuration of this pin is determined by
				programming the software configuration registers.
17	DTR3#/ GP32	DO8/ DIO8	VCC	 Data Terminal Ready 3 # / General Purpose I/O 32 The first function of this pin is Data Terminal Ready 3#. DTR# is used to indicate to the MODEM or data set that the device is ready to exchange data. DTR# is activated by setting the appropriate bit in the MCR register to 1. After a Master Reset operation or during Loop mode, DTR# is set to its inactive state. The second function of this pin is the General Purpose I/O Port 3 Bit 2. The function configuration of this pin is determined by programming the software configuration registers.
16	CTS3#/ GP33	DI/ DIO8	VCC	 Clear to Send 3 # / General Purpose I/O 33 The first function of this pin is Clear to Send 3 #. When the signal is low, it indicates that the MODEM or data set is ready to accept data. The CTS# signal is a MODEM status input whose condition can be tested by reading the MSR register. The second function of this pin is the General Purpose I/O Port 3 Bit 3. The function configuration of this pin is determined by programming the software configuration registers.
14	RI3#/ GP34	DI/ DIO8	VCC	 Ring Indicator 3 # / General Purpose I/O 34 The first function of this pin is Ring Indicator 3 #. When the signal is low, it indicates that a telephone ring signal has been received by the MODEM. The RI# signal is a MODEM status input whose condition can be tested by reading the MSR register. The second function of this pin is the General Purpose I/O Port 3 Bit 4. The function configuration of this pin is determined by programming the software configuration registers
13	DCD3#/ GP35	DI/ DIO8	VCC	 Data Carrier Detect 3 # / General Purpose I/O 35 The first function of this pin is Data Carrier Detect 3 #. When the signal is low, it indicates that the MODEM or data set has detected a carrier. The DCD# signal is a MODEM status input whose condition can be tested by reading the MSR register. The second function of this pin is the General Purpose I/O Port 3 Bit 5. The function configuration of this pin is determined by programming the software configuration registers.

Table 5-7. Pin Description of Serial Port 4 Signals

Pin(s) No.	Symbol	Attribute	Power	Description
29	SIN4/ GP16/ SO	DI/ DIOD8/ DO	VCC	Serial Data Input 4/ General Purpose I/O 16/ Serial Flash Output Data This first function of this pin is input receives serial data

Pin Descriptions

Pin(s) No.	Symbol	Attribute	Power	Description
(3) 1101		,		from the communications link.
				 The second function of this pin is the General Purpose I/O Port 1 Bit 6. The third function of this pin is Serial Flash Output Data. The function configuration of this pin is determined by programming the software configuration registers.
28	SOUT4/	DO8/	VCC	Serial Data Output 4/Serial Flash Chip Enable#
	CE_N	DOD8		 This first function of this pin is output sends serial data to the communications link. This signal is set to a marking state (logic 1) after a Master Reset operation or when the device is in one of the Infrared communications modes. The second function of this pin is Serial Flash Chip Enable#. The function configuration of this pin is determined by programming the software configuration registers.
27	DSR4#/	DI/	VCC	Data Set Ready 4 #/ General Purpose I/O 20
	GP20	DIOD8		 The first function of this pin is Data Set Ready 4 #. When the signal is low, it indicates that the MODEM or data set is ready to establish a communications link. The DSR# signal is a MODEM status input whose condition can be tested by reading the MSR register. The second function of this pin is the General Purpose I/O Port 2 Bit 0. The function configuration of this pin is determined by programming the software configuration registers.
26	RTS4#/	DO8/	VCC	Request to Send 4 #/ General Purpose I/O 21
	GP21	DIOD8		 The first function of this pin is Request to Send 4#. When this signal is low, this output indicates to the MODEM or data set that the device is ready to send data. RTS# is activated by setting the appropriate bit in the MCR register to 1. After a Master Reset operation or during Loop mode, RTS# is set to its inactive state. The second function of this pin is the General Purpose I/O Port 2 Bit 1. The function configuration of this pin is determined by programming the software configuration registers.
25	DTR4#/	DO8/	VCC	Data Terminal Ready 4 #/ General Purpose I/O 22/ Serial
	GP22/ SCK	DIOD8/ DO		 Flash Clock The first function of this pin is Data Terminal Ready 4#. DTR# is used to indicate to the MODEM or data set that the device is ready to exchange data. DTR# is activated by setting the appropriate bit in the MCR register to 1. After a Master Reset operation or during Loop mode, DTR# is set to its inactive state. The second function of this pin is the General Purpose I/O Port 2 Bit 2. The third function of this pin is Serial Flash Clock. The function configuration of this pin is determined by programming the software configuration registers.
24	CTS4#/	DI/	VCC	Clear to Send 4 #/ General Purpose I/O 23/ Serial Flash In
	GP23/ SI	DIOD8/ DI		 Data The first function of this pin is Clear to Send 4#. When the signal is low, it indicates that the MODEM or data set is ready to accept data. The CTS# signal is a MODEM status input whose condition can be tested by reading the MSR register. The second function of this pin is the General Purpose I/O Port 2 Bit 3. The third function of this pin is Serial Flash In Data. The function configuration of this pin is determined by

www.ite.com.tw 15 IT8781F V0.2.2

Pin(s) No.	Symbol	Attribute	Power	Description
				programming the software configuration registers.
23	RI4# GP24	DI/ DIOD8	VCC	 Ring Indicator 4 #/ General Purpose I/O 24 The first function of this pin is Ring Indicator 4 #. When the signal is low, it indicates that a telephone ring signal has been received by the MODEM. The RI# signal is a MODEM status input whose condition can be tested by reading the MSR register. The second function of this pin is the General Purpose I/O Port 2 Bit 4. The function configuration of this pin is determined by programming the software configuration registers
22	DCD4#/ GP25	DI/ DIOD8	VCC	 Data Carrier Detect 4 # General Purpose I/O 25 The first function of this pin is Data Carrier Detect 4 #. When the signal is low, it indicates that the MODEM or data set has detected a carrier. The DCD# signal is a MODEM status input whose condition can be tested by reading the MSR register. The second function of this pin is the General Purpose I/O Port 2 Bit 5. The function configuration of this pin is determined by programming the software configuration registers

Table 5-8. Pin Description of Parallel Port Signals

Pin(s) No.	Symbol	Attribute	Power	Description
100	SLCT	DI	VCC	Printer Select This signal goes high when the line printer has been selected.
101	PE	DI	VCC	Printer Paper End This signal is set high by the printer when it runs out of paper.
102	BUSY	DI	VCC	Printer Busy This signal goes high when the line printer has a local operation in progress and cannot accept data.
103	ACK#	DI	VCC	Printer Acknowledge # This signal goes low to indicate that the printer has already received a character and is ready to accept another one.
104	SLIN#	DIO24	VCC	Printer Select Input # When the signal is low, the printer is selected. This signal is derived from the complement of bit 3 of the printer control register.
105	INIT#	DIO24	VCC	Printer Initialize # When the signal is low, the printer is selected. This signal is derived from the complement of bit 3 of the printer control register.
106	ERR#	DI	VCC	Printer Error # When the signal is low, it indicates that the printer has encountered an error. The error message can be read from bit 3 of the printer status register.
107	AFD#	DIO24	VCC	Printer Auto Line Feed # When the signal is low, it is derived from the complement of bit 1 of the printer control register and is used to advance one line after each line is printed.
108	STB#	DI	VCC	Printer Strobe # When the signal is low, it is the complement of bit 0 of the printer control register and is used to strobe the printing data into the printer.
109-116	PD[0:7]	DIO24	VCC	Parallel Port Data [0:7] This bus provides a byte-wide input or output to the system. The eight lines are held in a high impedance state when the

Pin(s) No.	Symbol	Attribute	Power	Description
				port is deselected.

Table 5-9. Pin Description of Floppy Disk Controller Signals

Pin(s) No.	Symbol	Attribute	Power	Description
51	DENSEL#	DO24L	VCC	FDD Density Select #
				DENSEL# is high for high data rates (500 Kbps, 1 Mbps).
- 50	NATO A #	D024I	\/CC	DENSEL# is low for low data rates (250 Kbps, 300 Kbps).
52	MTRA#	DO24L	VCC	FDD Motor A Enable #
53	SST/	SST/	VCC	This signal is active low. External Thermal Sensor Data / FDD Motor B Enable #
33	MTRB#	DO24L	VCC	The first function of this pin is SST.
	WITKD#	BOZ4L		The first function of this pin is SS1. The second function of this pin is FDD Motor B #. This
				signal is active low.
				The function configuration of this pin is determined by
				programming the software configuration registers. When
				External Thermal Sensor Host is enabled (bit<6:4> of EC
				Index 0Ah), this pin is selected as SST or ETS_DAT.
54	DRVA#	DO24L	VCC	FDD Drive A Enable #
				This signal is active low.
55	PECI/	PECI/	VCC	External Thermal Sensor Clock / FDD Drive B Enable #
	DRVB#	DO24L		The first function of this pin is PECI.
				The second function of this pin is FDD Drive B #. This
				signal is active low.
				The function configuration of this pin is determined by programming the software configuration registers. When
				External Thermal Sensor Host is enabled (bit<6:4> of EC
				Index 0Ah), this pin is selected as PECI or ETS_CLK.
56	WDATA#	DO24L	VCC	FDD Write Serial Data to the Drive #
				This signal is active low.
57	DIR#	DO24L	VCC	FDD Head Direction #
				Step in when this signal is low and step out when high during
				a SEEK operation.
58	STEP#	DO24L	VCC	FDD Step Pulse #
			1400	This signal is active low.
59	HDSEL#	DO24L	VCC	FDD Head Select #
60	WCATE#	DO24L	VCC	This signal is active low. FDD Write Gage Enable #
60	WGATE#	DO24L	VCC	This signal is active low.
61	RDATA#	DI	VCC	FDD Read Disk Data #
"	INDATA#	Di	V 00	This signal is active low. It is serial data input from FDD.
62	TRK0#	DI	VCC	FDD Track 0 #
<u> </u>	11110"	٥.		This signal is active low. It indicates that the head of the
				selected drive is on track 0.
63	INDEX#	DI	VCC	FDD Index #
				This signal is active low. It indicates the beginning of a disk
				track.
64	WPT#	DI	VCC	FDD Write Protect #
				This signal is active low. It indicates that the disk of the
05	DOMONO.	DI DI	\/CC	selected drive is write-protected.
65	DSKCHG#	DI	VCC	FDD Disk Change # This signal is active low. It senses whether the drive door has
				been opened or a diskette has been changed.
				been opened of a diskette has been changed.

Table 5-10. Pin Description of Keyboard Controller Signals

|--|

Pin(s) No.	Symbol	Attribute	Power	Description
80	KDAT/ GP61	DIOD24/ DIOD24	VCCH	 Keyboard Data/ General Purpose I/O 61 The first function of this pin is Keyboard Data. The second function of this pin is the General Purpose I/O Port 6 Bit 1. This set only supports Simple I/O function. The function configuration of this pin is determined by programming the software configuration registers. This pin doesn't support internal pull-up.
81	KCLK/ GP60	DIOD24/ DIOD24	VCCH	Keyboard Clock/ General Purpose I/O 60 The first function of this pin is Keyboard Clock. The second function of this pin is the General Purpose I/O Port 6 Bit 0. This set only supports Simple I/O function. The function configuration of this pin is determined by programming the software configuration registers. This pin doesn't support internal pull-up.
82	MDAT/ GP57	DIOD24/ DIOD24	VCCH	 PS/2 Mouse Data/ General Purpose I/O 57 The first function of this pin is PS/2 Mouse Data. The second function of this pin is the General Purpose I/O Port 5 Bit 7. The function configuration of this pin is determined by programming the software configuration registers. This pin doesn't support internal pull-up.
83	MCLK/ GP56	DIOD24/ DIOD24	VCCH	 PS/2 Mouse Clock/ General Purpose I/O 56 The first function of this pin is PS/2 Mouse Clock. The second function of this pin is the General Purpose I/O Port 5 Bit 6. The function configuration of this pin is determined by programming the software configuration registers. This pin doesn't support internal pull-up.
45	KRST#/ GP62	DO16/ DIOD16	VCC	Keyboard Reset #/ General Purpose I/O 62 The first function of this pin is Keyboard Reset #. The second function of this pin is the General Purpose I/O Port 6 Bit 2. This set only supports Simple I/O function. The function configuration of this pin is determined by programming the software configuration registers.
46	GA20/ JP7	DO16/ DI	VCC	Gate Address 20 <u>During LRESET#, this pin is input for JP7 power-on</u> <u>strapping option</u>

Table 5-11. Pin Description of Smart Card Reader Interface Signals

			<u> </u>	oniant dana redado inicinado dignalo
Pin(s) No.	Symbol	Attribute	Power	Description
31	SCRRST/	DOD8/	VCC	Smart Card Reset / General Purpose I/O 14
	GP14	DIOD8		The first function of this pin is Smart Card Reset.
				The second function of this pin is the General Purpose I/O Port 1 Bit 4.
				The function configuration of this pin is determined by programming the software configuration registers.
32	SCRPFET#/	DOD8/	VCC	Smart Card Power FET Control Output # / General
	GP13	DIOD8		Purpose I/O 13
				The first function of this pin is Smart Card Power FET
				Control Output #. The Smart Card Reader interface
				requires this pin to drive an external Power FET to supply the current for the Smart Card.
				The second function of this pin is the General Purpose I/O Port 1 Bit 3.
				The function configuration of this pin is determined by programming the software configuration registers.

Pin Descriptions

Pin(s) No.	Symbol	Attribute	Power	Description
33	SCRIO/ GP12	DIOD8/ DIOD8	VCC	Smart Card Serial Data I/O / Data Terminal Ready 5# / General Purpose I/O 12 • The first function of this pin is Smart Card Serial Data I/O. • The second function of this pin is the General Purpose I/O Port 1 Bit 2. The function configuration of this pin is determined by programming the software configuration registers.
34	SCRCLK/ GP11	DOD8 ⁷ DIOD8	VCC	Smart Card Clock/General Purpose I/O 11 The first function of this pin is Smart Card Clock. Three different card clocks are selectable from this pin: high speed (7.1 MHz), low speed (Default: 3.5 MHz) and a programmable card clock. The third function of this pin is the General Purpose I/O Port 1 Bit 1. The function configuration of this pin is determined by programming the software configuration registers.
48	SCRPSNT#/ GP50	DI/ DIOD8	VCC	SCRPSNT # / General Purpose I/O 50 The first function of this pin is Smart Card Present Detect #. This pin provides the Smart Card insertion detection for the Smart Card Reader interface. Upon detecting the insertion of the Smart Card, this pin will trigger the power-on event. The second function of this pin is the General Purpose I/O Port 5 Bit 0. The function configuration of this pin is determined by programming the software configuration registers.

Table 5-12. Pin Description of Hardware Monitor Signals Note1

Pin(s) No.	Symbol	Attribute	Power	Description
98-96 94-91	VIN[0:2] VIN[4:7]	Al	AVCC	Voltage Analog Inputs [0:7] 0 to 4.096V FSR Analog Inputs.
95	VIN3/	Al/	AVCC	Voltage Analog Input 3 / ATX Power Good
	ATXPG	DI		The first function of this pin is 0 to 4.096V FSR Analog Inputs. The first function of this pin is PCI Reset Input #. The range of this pin is 0 to 4.096V FSR Analog Inputs. I/2 will be (VCC power-level-detect AND RESETCON# AND SUSB# AND ATXPG) if bit0 of Index 2Ch is 1, or (VCC power-level-detect AND RESETCON# AND SUSB#) if the bit is 0. The function configuration of this pin is determined by programming the software configuration registers.
90	VREF	AO	AVCC	Reference Voltage Output Regulated and referred voltage for three external temperature sensors and negative voltage monitor.
89-87	TMPIN[1:3]	Al	AVCC	External Thermal Inputs [1:3] Connected to thermistors [1:3] or thermal temperature sensors.
68	COPEN#	DIOD8	3VSB or VBAT	Case Open Detection # The Case Open Detection is connected to a specially designed low power CMOS flip-flop dual-powered by battery or 3VSB for case open state preservation during power loss.
7	FAN_TAC1	DI	VCC	Fan Tachometer Input 1 0 to +5V amplitude fan tachometer input.
9	FAN_TAC2/ GP52	DI/ DIOD8	VCC	 Fan Tachometer Input 2 / General Purpose I/O 52 The first function of this pin is Fan Tachometer Input 2. 0 to +5V amplitude fan tachometer input. The second function of this pin is the General Purpose I/O Port 5 Bit 2. The function configuration of this pin is determined by programming the software configuration registers.
11	FAN_TAC3/ GP37	DI/ DIOD8	VCC	 Fan Tachometer Input 3 / General Purpose I/O 37 The first function of this pin is Fan Tachometer Input 3. 0 to +5V amplitude fan tachometer input. The second function of this pin is the General Purpose I/O Port 3 Bit 7. The function configuration of this pin is determined by programming the software configuration registers.

Table 5-13. Pin Description of Fan Controller Signals

Pin(s) No.	Symbol	Attribute	Power	Description
8	FAN_CTL1	DOD8	VCC	Fan Control Output 1
				(PWM output signal to Fan's FET.)
10	FAN_CTL2/	DOD8/	VCC	Fan Control Output 2 / General Purpose I/O 51
	GP51	DIOD8		The first function of this pin is Fan Control Output 2. (PWM output signal to Fan's FET.)
				The second function of this pin is the General Purpose I/O Port 5 Bit 1.
				The function configuration of this pin is determined by programming the software configuration registers.
12	FAN_CTL3/	DOD8/	VCC	Fan Control Output 3 / General Purpose I/O 36
	GP36	DIOD8		The first function of this pin is Fan Control Output 3. (PWM output signal to Fan's FET.) The second function of this pin is the Control Durrage I/O
				The second function of this pin is the General Purpose I/O

Pin Descriptions

Pin(s) No.	Symbol	Attribute	Power	Description
				Port 3 Bit 6. The function configuration of this pin is determined by programming the software configuration registers.

Table 5-14. Pin Description of Miscellaneous Signals

110
irpose I/O
by
Dy
)44
t Output #.
rpose I/O
by
) 54
ırpose I/O
ру
se I/O 43
n Button
1 Dutton
ırpose I/O
by
I/O 42
Off Control
ırpose I/O
by
Бу
ırpose I/O
, , , , , , , , , , , , , , , , , ,
by
ırpose I/O
hv
by
ırpose I/O
11 POSC 1/O
by
,
1 2 6 2 6 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7

Note 1: In addition to providing a highly integrated chip, ITE has also implemented a "SmartGuardian Utility" hardware monitoring application, providing a total solution for customers. The "SmartGuardian Utility" and the application note on the hardware monitoring circuit (the functional arrangement of VIN0-7, TMPIN1-3, FAN_TAC1-3 and FAN_CTL1-3) are interdependent. That is to say, the "SmartGuardian Utility" is accurate only when programmed according to the application note on the hardware monitoring circuit. ITE strongly recommends customers to follow the referenced application circuit of IT8781F to reduce the "time-to-market" schedule.

Pin No.	Symbol	Recommended function arrangement
98	VIN0	2 Volt for VCORE1 of CPU
97	VIN1	2 Volt for VCORE2 of CPU
96	VIN2	3.3 Volt for system
95	VIN3	5 Volt for system
94	VIN4	+12 Volt for system
93	VIN5	-12 Volt for system
92	VIN6	-5 Volt for system
91	VIN7	5 Volt for VCCH

IO Cell:

DO8: 8mA Digital Output buffer

DOD8: 8mA Digital Open-Drain Output buffer

DO16: 16mA Digital Output buffer DO24: 24mA Digital Output buffer

DO24L: 24mA shink/8mA drive Digital Output buffer

DIO8: 8mA Digital Input/Output buffer

DIOD8: 8mA Digital Open-Drain Input/Output buffer

DIO16: 16mA Digital Input/Output buffer

DIOD16: 16mA Digital Open-Drain Input/Output buffer

DIO24: 24mA Digital Input/Output buffer

DIOD24: 24mA Digital Open-Drain Input/Output buffer

DI: Digital Input AI: Analog Input AO: Analog Output

SST: special design for SST interface PECI: special design for PECI interface

6. List of GPIO Pins

Table 6-1. General Purpose I/O Group 1 (Set 1)

Pin(s) No.	Symbol	Attribute	Description
84	GP10	DIOD8	General Purpose I/O 10
34	SCRCLK/	DOD8/	Smart Card Clock/ General Purpose I/O 11
	GP11	DIOD8	
33	SCRIO/	DIOD8/	Smart Card Serial Data I/O/ General Purpose I/O 12
	GP12	DOD8/	
		DIOD8	
32	SCRPFET#/	DOD8/	Smart Card Power FET Control Output # / General Purpose I/O 13
	GP13	DOD8/	
		DIOD8	
31	SCRRST/	DOD8/	Smart Card Reset / General Purpose I/O 14
	GP14	DI8/	
		DIOD8	
30	RESETCO#/	DI/	Reset Connect # / General Purpose I/O 15
	GP15	DI/	
		DIOD8	
29	SIN4/	DI/	Serial Data Input 4/ General Purpose I/O 16/ Serial Flash Output Data
	GP16/	DIOD8/	
	so	DO	

Table 6-2. General Purpose I/O Group 2 (Set 2)

Pin(s) No.	Symbol	Attribute	Description
27	DSR4#/	DI/	Data Set Ready 4 #/ General Purpose I/O 20
	GP20	DIOD8	
26	RTS4#/	DO8/	Request to Send 4 #/ General Purpose I/O 21
	GP21	DIOD8	
25	DTR4#/	DO8/	Data Terminal Ready 4 #/ General Purpose I/O 22/ Serial Flash Clock
	GP22/	DIOD8/	
	SCK	DO	
24	CTS4#/	DI/	Clear to Send 4 #/ General Purpose I/O 23/ Serial Flash In Data
	GP23/	DIOD8/	
	SI	DI	
23	RI4#/	DI/	Ring Indicator 4 #/ General Purpose I/O 24
	GP24	DIOD8	
22	DCD4#/	DI/	Data Carrier Detect 4 # General Purpose I/O 25
	GP25	DIOD8	
21	SIN3/	DI/	Serial Data Input 3/ General Purpose I/O 26
	GP26	DIOD8	
20	SOUT3/	DO8/	Serial Data Output 3/ General Purpose I/O 27
	GP27	DIOD8	

Table 6-3. General Purpose I/O Group 3 (Set 3)

Pin(s) No.	Symbol	Attribute	Description
19	DSR3#/ GP30	DI/ DIOD8	Data Set Ready 3 #/ General Purpose I/O 30
18	RTS3#/ GP31	DO8/ DIOD8	Request to Send 3 #/ General Purpose I/O 31
17	DTR3#/ GP32	DO8/ DIOD8	Data Terminal Ready 3 #/ General Purpose I/O 32
16	CTS3#/ GP33	DI/ DIOD8	Clear to Send 3 #/ General Purpose I/O 33
14	RI3#/ GP34	DI/ DIOD8	Ring Indicator 3 #/ General Purpose I/O 34
13	DCD3#/ GP35	DI/ DIOD8	Data Carrier Detect 3 # General Purpose I/O 35
12	FAN_CTL3/ GP36	DOD8/ DIOD8	Fan Control Output 3 / General Purpose I/O 36
11	FAN_TAC3/ GP37	DI/ DIOD8	Fan Tachometer Input 3 / General Purpose I/O 37

Table 6-4. General Purpose I/O Group 4 (Set 4)

Pin(s) No.	Symbol	Attribute	Description
79	3VSBSW#/	DO8/	3VSBSW# / General Purpose I/O 40
	GP40	DIOD8	
78	PWROK/	DO8/	Power OK of VCC / General Purpose I/O 41
	GP41	DIOD8	
76	PSON#/	DOD8/	Power Supply On-Off Output # / General Purpose I/O 42
	GP42	DIOD8	
75	PANSWH#/	DI/	Main Power Switch Button Input # / General Purpose I/O 43
	GP43	DIOD8	
72	PWRON#/	DOD8/	Power On Request Output # / General Purpose I/O 44
	GP44	DIOD8	
71	SUSB#/	DI/	SUSB # Input/ GP45
	GP45	DIOD8	
70	IRRX /	DI/	Infrared Receive Input / General Purpose I/O 46
	GP46	DIOD8	
66	IRTX/	DOD8/	Infrared Transmit Output / General Purpose I/O 47
	GP47	DIOD8	

Table 6-5. General Purpose I/O Group 5 (Set 5)

Pin(s) No.	Symbol	Attribute	Description
48	SCRPSNT#/	DI/	SCRPSNT #/ General Purpose I/O 50
	GP50	DI/	
		DIOD8	
10	FAN_CTL2/	DOD8/	Fan Control Output 2 / General Purpose I/O 51
	GP51	DIOD8	
9	FAN_TAC2/	DI/	Fan Tachometer Input 2 / General Purpose I/O 52
	GP52	DIOD8	
77	SUSC#/	DI/	SUSC# Input / General Purpose I/O 53
	GP53	DIOD8	
73	PME#/	DOD8/	Power Management Event # / General Purpose I/O 54
	GP54	DIOD8	
85	RSMRST#/	DOD8/	Resume Reset # / General Purpose I/O 55
	GP55	DIOD8	
83	MCLK/	DIOD24/	PS/2 Mouse Clock/ General Purpose I/O 56
	GP56	DIOD24	
82	MDAT/	DIOD24/	PS/2 Mouse Data/ General Purpose I/O 57
	GP57	DIOD24	

Table 6-6. General Purpose I/O Group 6 (Set 6)

Pin(s) No.	Symbol	Attribute	Description
81	KCLK/	DIOD24/	Keyboard Clock / General Purpose I/O 60
	GP60	DIOD24	
80	KDAT/	DIOD24/	Keyboard Data / General Purpose I/O 61
	GP61	DIOD24	
45	KRST#/	DO16/	Keyboard Reset / General Purpose I/O 62
	GP62	DIOD16	

This page is intentionally left blank.

Power On Strapping Options

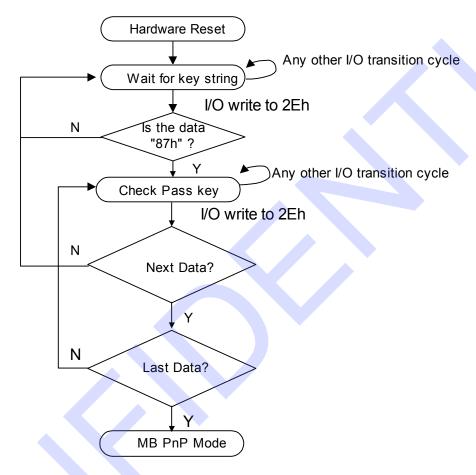
7. Power On Strapping Options and Special Pin Routings

Table 7-1. Power On Strapping Options

	Symbol	Value	Description	
JP1		1	Disabled	
Pin-121	Flashseg1_EN	0	Flash I/F Address Segment FFF0_0000~FFFF_FFFF & 000E_0000~000F_FFFF is enabled.	
JP3 Pin-124	CUID SEI	1	When there are two IT8781F chips in a system, and CS(bit 7 of configuration select and chip version register) set to '1', the chip with JP3=1 will be configured and chip with JP3=0 will exit the configuration mode.	
PIN-124	CHIP_SEL	0	When there are two IT8781F chips in a system, and CS(bit 7 of configuration select and chip version register) set to '0', the chip with JP3=0 will be configured and chip with JP3=1 will exit the configuration mode.	
		11	The default value of EC index 15/16/17h is 00h	
[JP5,JP7]		10	The default value of EC index 15/16/17h is 20h	
Pin-2 &46		01	The default value of EC index 15/16/17h is 40h	
		00	The default value of EC index 15/16/17h is 60h	
JP7		1	Disable WDT to rest PWROK	
(GA20) Pin-46	WDT_EN	0	Enable WDT to rest PWROK	

Note: JP2,4,6 are reserved for feature use.

Intel ICH PWBTN# SUSC# SUSB# VCCH_ SUSB# PWRON# SUSC# (77)(71)(72)To switch Suspend 3 VSBSW#(79) to- RAM power System IT8781F On-Off ATX PANSWH# **Power Supply Button** (75)PSON# PSON#(76)


Figure 7-1. IT8781F Special Applications Circuitry for Intel ICH

8. Configuration

8.1 Configuring Sequence Description

After a hardware reset or power-on reset, the IT8781F enters the normal mode with all logical devices disabled except the KBC. The initial state (enable bit) of this logical device (KBC) is "1".

There are three steps to completing the configuration setup: (1) Enter the MB PnP Mode; (2) Modify the data of configuration registers; (3) Exit the MB PnP Mode. The undesired result may occur if the MB PnP Mode is not exited properly.

(1) Enter the MB PnP Mode

To enter the MB PnP Mode, four special I/O write operations are to be performed during the Wait for Key state. To ensure the initial state of the key-check logic, it is necessary to perform four write operations to the Special Address port (2Eh). Two different enter keys are provided to select configuration ports (2Eh/2Fh or 4Eh/4Fh) of the next step.

		Address port	Data port
	87h, 01h, 55h, 55h;	2Eh	2Fh
or	87h, 01h, 55h, AAh;	4Eh	4Fh

(2) Modify the Data of configuration registers

All configuration registers can be accessed after entering the MB PnP Mode. Before accessing a selected register, the content of Index 07h must be changed to the LDN to which the register belongs, except some Global registers.

(3) Exit the MB PnP Mode

Set bit 1 of the configure control register (Index=02h) to "1" to exit the MB PnP Mode.

8.2 Description of Configuration Registers

All the registers except APC/PME' registers will be reset to the default state when RESET is activated.

Table 8-1. Global Configuration Registers

LDN	Index	R/W	Reset	Configuration Register or Action
All	02h	W	NA	Configure Control
All	07h	R/W	NA	Logical Device Number (LDN)
All	20h	R	87h	Chip ID Byte 1
All	21h	R	81h	Chip ID Byte 2
All	22h	W-R	00h	Configuration Select and Chip Version
All	23h	R/W	00h	Clock Selection Register
All	24h	R/W	00h	Software Suspend and Flash I/F Control Register
07h Note1	25h	R/W	01h	GPIO Set 1 Multi-Function Pin Selection Register
07h Note1	26h	R/W	00h	Bit 0 powered by VCCH. GPIO Set 2 Multi-Function Pin Selection Register Bit 0-7 powered by VCCH.
07h Note1	27h	R/W	00h	GPIO Set 3 Multi-Function Pin Selection Register
07h Note1	28h	R/W	40h	GPIO Set 4 Multi-Function Pin Selection Register Bit 0-7 powered by VCCH.
07h Note1	29h	R/W	00h	GPIO Set 5 Multi-Function Pin Selection Register Bit 3-5 powered by VCCH.
07h Note1	2Ah	R/W	00h	Extended 1 Multi-Function Pin Selection Register Bit 0-7 powered by VCCH.
All	2Bh	R/W	00h	Logical Block Configuration Lock Register
07h Note1	2Ch	R/W	00h	Extended 2 Multi-Function Pin Selection Register Bit 0-7 powered by VCCH.
F4h Note1	2Eh	R/W	00h	Test 1 Register
F4h Note1	2Fh	R/W	00h	Test 2 Register

Table 8-2. FDC Configuration Registers
--

LDN	Index	R/W	Reset	Configuration Register or Action
00h	30h	R/W	00h	FDC Activate
00h	60h	R/W	03h	FDC Base Address MSB Register
00h	61h	R/W	F0h	FDC Base Address LSB Register
00h	70h	R/W	06h	FDC Interrupt Level Select
00h	74h	R/W	02h	FDC DMA Channel Select
00h	F0h	R/W	00h	FDC Special Configuration Register 1
00h	F1h	R/W	00h	FDC Special Configuration Register 2

Table 8-3. Serial Port 1 Configuration Registers

·				
LDN	Index	R/W	Reset	Configuration Register or Action
01h	30h	R/W	00h	Serial Port 1 Activate
01h	60h	R/W	03h	Serial Port 1 Base Address MSB Register
01h	61h	R/W	F8h	Serial Port 1 Base Address LSB Register
01h	70h	R/W	04h	Serial Port 1 Interrupt Level Select
01h	F0h	R/W	00h	Serial Port 1 Special Configuration Register 1
01h	F1h	R/W	50h	Serial Port 1 Special Configuration Register 2
01h	F2h	R/W	00h	Serial Port 1 Special Configuration Register 3
01h	F3h	R/W	7Fh	Serial Port 1 Special Configuration Register 4

Table 8-4. Serial Port 2 Configuration Registers

LDN	Index	R/W	Reset	Configuration Register or Action
02h	30h	R/W	00h	Serial Port 2 Activate
02h	60h	R/W	02h	Serial Port 2 Base Address MSB Register
02h	61h	R/W	F8h	Serial Port 2 Base Address LSB Register
02h	70h	R/W	03h	Serial Port 2 Interrupt Level Select
02h	F0h	R/W	00h	Serial Port 2 Special Configuration Register 1
02h	F1h	R/W	50h	Serial Port 2 Special Configuration Register 2
02h	F2h	R/W	00h	Serial Port 2 Special Configuration Register 3
02h	F3h	R/W	7Fh	Serial Port 2 Special Configuration Register 4

Table 8-5. Parallel Port Configuration Registers

LDN	Index	R/W	Reset	Configuration Register or Action
03h	30h	R/W	00h	Parallel Port Activate
03h	60h	R/W	03h	Parallel Port Primary Base Address MSB Register
03h	61h	R/W	78h	Parallel Port Primary Base Address LSB Register
03h	62h	R/W	07h	Parallel Port Secondary Base Address MSB Register

LDN	Index	R/W	Reset	Configuration Register or Action
03h	63h	R/W	78h	Parallel Port Secondary Base Address LSB Register
03h	70h	R/W	07h	Parallel Port Interrupt Level Select
03h	74h	R/W	03h	Parallel Port DMA Channel Select Note2
03h	F0h	R/W	03h Note3	Parallel Port Special Configuration Register

Table 8-6. Environment Controller Configuration Registers

LDN	Index	R/W	Reset	Configuration Register or Action
04h	30h	R/W	00h	Environment Controller Activate
04h	60h	R/W	02h	Environment Controller Base Address MSB Register
04h	61h	R/W	90h	Environment Controller Base Address LSB Register
04h	62h	R/W	02h	PME Direct Access Base Address MSB Register
04h	63h	R/W	30h	PME Direct Access Base Address LSB Register
04h	70h	R/W	09h	Environment Controller Interrupt Level Select
04h	F0h	R/W	00h	APC/PME Event Enable Register
04h	F1h	R/W	00h	APC/PME Status Register
04h	F2h	R/W	00h	APC/PME Control Register 1
04h	F3h	R/W	00h	Environment Controller Special Configuration Register
04h	F4h	R-R/W	00h	APC/PME Control Register 2
04h	F5h	R/W	-	APC/PME Special Code Index Register
04h	F6h	R/W	-	APC/PME Special Code Data Register

Table 8-7. KBC(Keyboard) Configuration Registers

_			, ,	, ,
LDN	Index	R/W	Reset	Configuration Register or Action
05h	30h	R/W	01h	KBC Activate
05h	60h	R/W	00h	KBC Data Base Address MSB Register
05h	61h	R/W	60h	KBC Data Base Address LSB Register
05h	62h	R/W	00h	KBC Command Base Address MSB Register
05h	63h	R/W	64h	KBC Command Base Address LSB Register
05h	70h	R/W	01h	KBC Interrupt Level Select
05h	7 1h	R-R/W	02h	KBC Interrupt Type Note4
05h	F0h	R/W	00h	KBC Special Configuration Register

Table 8-8. KBC(Mouse) Configuration Registers

LDN	Index	R/W	Reset	Configuration Register or Action
06h	30h	R/W	00h	KBC (Mouse) Activate
06h	70h	R/W	0Ch	KBC (Mouse) Interrupt Level Select
06h	71h	R-R/W	02h	KBC (Mouse) Interrupt Type Note4

ĺ	LDN	Index	R/W	Reset	Configuration Register or Action
	06h	F0h	R/W	00h	KBC (Mouse) Special Configuration Register

Table 8-9. GPIO Configuration Registers

	Table 8-9. GPIO Configuration Registers						
LDN	Index	R/W	Reset	Configuration Register or Action			
07h	60h	R/W	00h	SMI# Normal Run Access Base Address MSB Register			
07h	61h	R/W	00h	SMI# Normal Run Access Base Address LSB Register			
07h	62h	R/W	00h	Simple I/O Base Address MSB Register			
07h	63h	R/W	00h	Simple I/O Base Address LSB Register			
07h	64h	R/W	00h	Serial Flash I/F Base Address MSB Register			
07h	65h	R/W	00h	Serial Flash I/F Base Address LSB Register			
07h	70h	R/W	00h	Panel Button De-bounce Interrupt Level Select Register			
07h	71h	R/W	00h	Watch Dog Timer Control Register			
07h	72h	R/W	001s0000b	Watch Dog Timer Configuration Register			
07h	73h	R/W	38h	Watch Dog Timer Time-out Value (LSB) Register			
07h	74h	R/W	00h	Watch Dog Timer Time-out Value (MSB) Register			
07h	B0h	R/W	00h	GPIO Set 1 Pin Polarity Register			
07h	B1h	R/W	00h	GPIO Set 2 Pin Polarity Register			
07h	B2h	R/W	00h	GPIO Set 3 Pin Polarity Register			
07h	B3h	R/W	00h	GPIO Set 4 Pin Polarity Register			
07h	B4h	R/W	00h	GPIO Set 5 Pin Polarity Register			
07h	B5h	R/W	00h	GPIO Set 6 Pin Polarity Register			
07h	B8h	R/W	20h	GPIO Set 1 Pin Internal Pull-up Enable Register			
07h	B9h	R/W	00h	GPIO Set 2 Pin Internal Pull-up Enable Register			
07h	BAh	R/W	00h	GPIO Set 3 Pin Internal Pull-up Enable Register			
07h	BBh	R/W	00h	GPIO Set 4 Pin Internal Pull-up Enable Register			
07h	BCh	R/W	00h	GPIO Set 5 Pin Internal Pull-up Enable Register			
07h	C0h	DAM	01h	Simple I/O Set 1 Enable Register			
0711	Con	R/W	0111	Bit-0 powered by VCCH.			
07h	C1h	R/W	00h	Simple I/O Set 2 Enable Register			
0711	Cili	17/7/	0011	Bit 0-7 powered by VCCH.			
07h	C2h	R/W	00h	Simple I/O Set 3 Enable Register			
07h	C3h	R/W	40h	Simple I/O Set 4 Enable Register			
0711	0011	1000	7011	Bit 0-7 powered by VCCH.			
07h	C4h	R/W	00h	Simple I/O Set 5 Enable Register			
5711	Ü			Bit 0-7 powered by VCCH.			
07h	C8h	R/W	01h	Simple I/O Set 1 Output Enable Register			
07h	C9h	R/W	00h	Simple I/O Set 2 Output Enable Register			

LDN	Index	R/W	Reset Configuration Register or Action	
07h	CAh	R/W	00h	Simple I/O Set 3 Output Enable Register
07h	CBh	R/W	40h	Simple I/O Set 4 Output Enable Register Bit 0-7 powered by VCCH.
07h	CCh	R/W	00h	Simple I/O Set 5 Output Enable Register Bit 0-7 powered by VCCH.

Table 8-10. GPIO Configuration Registers

LDN Index R/W Reset Configuration Register or Action 07h E0h R/W 00h Panel Button De-bounce 0 Input Pin Mapping Register 07h E1h R/W 00h Panel Button De-bounce 1 Input Pin Mapping Register 07h E2h R/W 00h IRQ External Routing 0 Input Pin Mapping Register 07h E3h R/W 00h IRQ External Routing 1-0 Interrupt Level Selection Register 07h E6h R/W 00h Reserved 07h E6h R/W 00h Reserved 07h E7h R/W 00h SMI# Control Register 1 07h F7h R/W 00h SMI# Status Register 2 07h F2h R/W 00h SMI# Status Register 2					
07h E1h R/W 00h Panel Button De-bounce 1 Input Pin Mapping Register 07h E2h R/W 00h IRQ External Routing 0 Input Pin Mapping Register 07h E3h R/W 00h IRQ External Routing 1 Input Pin Mapping Register 07h E3h R/W 00h IRQ External Routing 1-0 Interrupt Level Selection Register 07h E5h R/W 00h Reserved 07h E6h R/W 00h Reserved 07h E6h R/W 00h Reserved 07h E7h R/W 00h Reserved 07h E7h R/W 00h Reserved 07h E7h R/W 00h SMI# Control Register 1 07h F1h R/W 00h SMI# Status Register 2 07h F2h R/W 00h SMI# Status Register 2 07h F3h R/W 00h SMI# Pin Mapping Register 07h F5h R/W 00h Hardware Monitor Thermal O	LDN	Index	R/W	Reset	Configuration Register or Action
07h E2h R/W 00h IRQ External Routing 0 Input Pin Mapping Register 07h E3h R/W 00h IRQ External Routing 1 Input Pin Mapping Register 07h E4h R/W 00h IRQ External Routing 1-0 Interrupt Level Selection Register 07h E5h R/W 00h Reserved 07h E6h R/W 00h Reserved 07h E7h R/W 00h SMI# Control Register 1 07h F1h R/W 00h SMI# Status Register 2 07h F2h R/W 00h SMI# Status Register 2 07h F3h R/W 00h SMI# Pin Mapping Register 07h F5h R/W 00h Hardware Monitor Thermal Output Pin Mapping Register 07h F6h R/W 00h Keyboard Lock Pin Mapping	07h	E0h	R/W	00h	Panel Button De-bounce 0 Input Pin Mapping Register
07h E3h R/W 00h IRQ External Routing 1 Input Pin Mapping Register 07h E4h R/W 00h IRQ External Routing 1-0 Interrupt Level Selection Register 07h E5h R/W 00h Reserved 07h E6h R/W 00h Reserved 07h E7h R/W 00h Reserved 07h E7h R/W 00h Reserved 07h E7h R/W 00h SMI# Control Register 1 07h F0h R/W 00h SMI# Control Register 2 07h F1h R/W 00h SMI# Status Register 2 07h F3h R/W 00h SMI# Status Register 2 07h F4h R/W 00h SMI# Pin Mapping Register 07h F5h R/W 00h Hardware Monitor Thermal Output Pin Mapping Register 07h F6h R/W 00h Keyboard Lock Pin Mapping Register 07h F8h R/W 00h Keyboard Lock Pin Mapping	07h	E1h	R/W	00h Panel Button De-bounce 1 Input Pin Mapping Register	
07h E4h R/W 00h IRQ External Routing 1-0 Interrupt Level Selection Register 07h E5h R/W 00h Reserved 07h E6h R/W 00h Reserved 07h E7h R/W 00h Reserved 07h E7h R/W 00h Reserved 07h E7h R/W 00h SMI# Control Register 1 07h F1h R/W 00h SMI# Control Register 2 07h F2h R/W 00h SMI# Status Register 1 07h F3h R/W 00h SMI# Status Register 2 07h F4h R/W 00h SMI# Pin Mapping Register 07h F5h R/W 00h Hardware Monitor Thermal Output Pin Mapping Register Bit 0-7 powered by VCCH. 07h F6h R/W 00h Keyboard Lock Pin Mapping Register Bit 0-7 powered by VCCH. 07h F8h R/W 00h Keyboard Lock Pin Mapping Register Bit 0-7 powered by VCCH. 07h F9h R/W <td>07h</td> <td>E2h</td> <td>R/W</td> <td>00h</td> <td>IRQ External Routing 0 Input Pin Mapping Register</td>	07h	E2h	R/W	00h	IRQ External Routing 0 Input Pin Mapping Register
07h E4h R/W 00h Register 07h E5h R/W 00h Reserved 07h E6h R/W 00h Reserved 07h E7h R/W 00h Reserved 07h E7h R/W 00h SMI# Control Register 1 07h F0h R/W 00h SMI# Control Register 2 07h F1h R/W 00h SMI# Status Register 1 07h F3h R/W 00h SMI# Status Register 2 07h F3h R/W 00h SMI# Status Register 2 07h F3h R/W 00h SMI# Pin Mapping Register 07h F4h R/W 00h Hardware Monitor Thermal Output Pin Mapping Register 07h F6h R/W 00h Keyboard Lock Pin Mapping Register 07h F7h R/W 00h Keyboard Lock Pin Mapping Register 07h F8h R/W 00h GP LED Blinking 1 Control Register Bit 0-	07h	E3h	R/W	00h	IRQ External Routing 1 Input Pin Mapping Register
07h E6h R/W 00h Reserved 07h E7h R/W 00h Reserved 07h EFh R/W 00001s0 FLASH Signal SCK/CE_N Select 07h F0h R/W 00h SMI# Control Register 1 07h F1h R/W 00h SMI# Control Register 2 07h F2h R/W 00h SMI# Status Register 1 07h F3h R/W 00h SMI# Status Register 2 07h F4h R/W 00h SMI# Pin Mapping Register 07h F5h R/W 00h SMI# Pin Mapping Register 07h F6h R/W 00h Hardware Monitor Thermal Output Pin Mapping Register 07h F7h R/W 00h Keyboard Lock Pin Mapping Register 07h F8h R/W 00h GP LED Blinking 1 Pin Mapping Register 07h F8h R/W 00h GP LED Blinking 1 Control Register 07h FAh R/W 00h GP LED Blinking 2 Pi	07h	E4h	R/W	00h	
07h E7h R/W 00h Reserved 07h EFh R/W 00001s0 FLASH Signal SCK/CE_N Select 07h F0h R/W 00h SMI# Control Register 1 07h F1h R/W 00h SMI# Control Register 2 07h F2h R/W 00h SMI# Status Register 1 07h F3h R/W 00h SMI# Status Register 2 07h F4h R/W 00h SMI# Pin Mapping Register 07h F5h R/W 00h Hardware Monitor Thermal Output Pin Mapping Register Bit 0-7 powered by VCCH. 07h F6h R/W 00h Keyboard Lock Pin Mapping Register 07h F7h R/W 00h Keyboard Lock Pin Mapping Register 07h F8h R/W 00h GP LED Blinking 1 Pin Mapping Register 07h F8h R/W 00h GP LED Blinking 2 Pin Mapping Register 07h FAh R/W 00h GP LED Blinking 2 Pin Mapping Register 07h F8h	07h	E5h	R/W	00h	Reserved
07h EFh R/W 00001s0 FLASH Signal SCK/CE_N Select 07h F0h R/W 00h SMI# Control Register 1 07h F1h R/W 00h SMI# Control Register 2 07h F2h R/W 00h SMI# Status Register 1 07h F3h R/W 00h SMI# Status Register 2 07h F4h R/W 00h SMI# Pin Mapping Register 07h F5h R/W 00h Hardware Monitor Thermal Output Pin Mapping Register Bit 0-7 powered by VCCH. 07h F6h R/W 00h Keyboard Lock Pin Mapping Register 07h F7h R/W 00h Keyboard Lock Pin Mapping Register 07h F8h R/W 00h GP LED Blinking 1 Pin Mapping Register 07h F9h R/W 00h GP LED Blinking 1 Control Register 07h F9h R/W 00h GP LED Blinking 2 Pin Mapping Register 07h F8h R/W 00h GP LED Blinking 2 Pin Mapping Register 07h	07h	E6h	R/W	00h	Reserved
07h F0h R/W 00h SMI# Control Register 1 07h F1h R/W 00h SMI# Control Register 2 07h F2h R/W 00h SMI# Status Register 1 07h F3h R/W 00h SMI# Status Register 2 07h F4h R/W 00h SMI# Pin Mapping Register 07h F5h R/W 00h Hardware Monitor Thermal Output Pin Mapping Register Bit 0-7 powered by VCCH. 07h F6h R/W 00h Hardware Monitor Alert Beep Pin Mapping Register 07h F7h R/W 00h Keyboard Lock Pin Mapping Register 07h F8h R/W 00h GP LED Blinking 1 Pin Mapping Register 07h F9h R/W 00h GP LED Blinking 1 Control Register 07h FAh R/W 00h GP LED Blinking 2 Pin Mapping Register 07h F8h R/W 00h GP LED Blinking 2 Control Register 07h F8h R/W 00h GP LED Blinking 2 Control Register <t< td=""><td>07h</td><td>E7h</td><td>R/W</td><td>00h</td><td>Reserved</td></t<>	07h	E7h	R/W	00h	Reserved
07h F1h R/W 00h SMI# Control Register 2 07h F2h R/W 00h SMI# Status Register 1 07h F3h R/W 00h SMI# Status Register 2 07h F4h R/W 00h SMI# Pin Mapping Register 07h F4h R/W 00h Hardware Monitor Thermal Output Pin Mapping Register 07h F6h R/W 00h Hardware Monitor Alert Beep Pin Mapping Register 07h F7h R/W 00h Keyboard Lock Pin Mapping Register 07h F8h R/W 00h GP LED Blinking 1 Pin Mapping Register 07h F9h R/W 00h GP LED Blinking 1 Control Register 07h FAh R/W 00h GP LED Blinking 2 Pin Mapping Register 07h F8h R/W 00h GP LED Blinking 2 Pin Mapping Register 07h F8h R/W 00h GP LED Blinking 2 Pin Mapping Register 07h F8h R/W 00h GP LED Blinking 2 Pin Mapping Register	07h	EFh	R/W	00001s0	FLASH Signal SCK/CE_N Select
07hF2hR/W00hSMI# Status Register 107hF3hR/W00hSMI# Status Register 207hF4hR/W00hSMI# Pin Mapping Register07hF5hR/W00hHardware Monitor Thermal Output Pin Mapping Register07hF6hR/W00hHardware Monitor Alert Beep Pin Mapping Register07hF7hR/W00hKeyboard Lock Pin Mapping Register07hF8hR/W00hGP LED Blinking 1 Pin Mapping Register07hF8hR/W00hGP LED Blinking 1 Control Register07hF9hR/W00hGP LED Blinking 2 Pin Mapping Register07hFAhR/W00hGP LED Blinking 2 Pin Mapping Register07hFBhR/W00hGP LED Blinking 2 Control Register07hFChR/W-RhReserved07hFDhR/W00hReserved	07h	F0h	R/W	00h	SMI# Control Register 1
07hF3hR/W00hSMI# Status Register 207hF4hR/W00hSMI# Pin Mapping Register07hF5hR/W00hHardware Monitor Thermal Output Pin Mapping Register Bit 0-7 powered by VCCH.07hF6hR/W00hHardware Monitor Alert Beep Pin Mapping Register07hF7hR/W00hKeyboard Lock Pin Mapping Register07hF8hR/W00hGP LED Blinking 1 Pin Mapping Register Bit 0-7 powered by VCCH.07hF9hR/W00hGP LED Blinking 1 Control Register Bit 0-7 powered by VCCH.07hFAhR/W00hGP LED Blinking 2 Pin Mapping Register Bit 0-7 powered by VCCH.07hFBhR/W00hGP LED Blinking 2 Control Register Bit 0-7 powered by VCCH.07hFChR/W-RhReserved07hFDhR/W00hReserved	07h	F1h	R/W	00h	SMI# Control Register 2
07hF4hR/W00hSMI# Pin Mapping Register07hF5hR/W00hHardware Monitor Thermal Output Pin Mapping Register Bit 0-7 powered by VCCH.07hF6hR/W00hHardware Monitor Alert Beep Pin Mapping Register07hF7hR/W00hKeyboard Lock Pin Mapping Register07hF8hR/W00hGP LED Blinking 1 Pin Mapping Register Bit 0-7 powered by VCCH.07hF9hR/W00hGP LED Blinking 1 Control Register Bit 0-7 powered by VCCH.07hFAhR/W00hGP LED Blinking 2 Pin Mapping Register Bit 0-7 powered by VCCH.07hFBhR/W00hGP LED Blinking 2 Control Register Bit 0-7 powered by VCCH.07hFChR/W-RhReserved07hFDhR/W00hReserved	07h	F2h	R/W	00h	SMI# Status Register 1
Hardware Monitor Thermal Output Pin Mapping Register Bit 0-7 powered by VCCH. O7h F6h R/W O0h Hardware Monitor Alert Beep Pin Mapping Register O7h F7h R/W O0h Keyboard Lock Pin Mapping Register O7h F8h R/W O0h GP LED Blinking 1 Pin Mapping Register Bit 0-7 powered by VCCH. O7h F9h R/W O0h GP LED Blinking 1 Control Register Bit 0-7 powered by VCCH. O7h FAh R/W O0h GP LED Blinking 2 Pin Mapping Register Bit 0-7 powered by VCCH. O7h FBh R/W O0h GP LED Blinking 2 Pin Mapping Register Bit 0-7 powered by VCCH. O7h FBh R/W O0h GP LED Blinking 2 Control Register Bit 0-7 powered by VCCH. O7h FCh R/W-Rh Reserved O7h FDh R/W O0h Reserved	07h	F3h	R/W	00h	SMI# Status Register 2
07hF5hR/W00hBit 0-7 powered by VCCH.07hF6hR/W00hHardware Monitor Alert Beep Pin Mapping Register07hF7hR/W00hKeyboard Lock Pin Mapping Register07hF8hR/W00hGP LED Blinking 1 Pin Mapping Register Bit 0-7 powered by VCCH.07hF9hR/W00hGP LED Blinking 1 Control Register Bit 0-7 powered by VCCH.07hFAhR/W00hGP LED Blinking 2 Pin Mapping Register Bit 0-7 powered by VCCH.07hFBhR/W00hGP LED Blinking 2 Control Register Bit 0-7 powered by VCCH.07hFChR/W-RhReserved07hFDhR/W00hReserved	07h	F4h	R/W	00h SMI# Pin Mapping Register	
Bit 0-7 powered by VCCH. O7h F6h R/W O0h Hardware Monitor Alert Beep Pin Mapping Register O7h F7h R/W O0h Keyboard Lock Pin Mapping Register O7h F8h R/W O0h GP LED Blinking 1 Pin Mapping Register Bit 0-7 powered by VCCH. O7h F9h R/W O0h GP LED Blinking 1 Control Register Bit 0-7 powered by VCCH. O7h FAh R/W O0h GP LED Blinking 2 Pin Mapping Register Bit 0-7 powered by VCCH. GP LED Blinking 2 Pin Mapping Register Bit 0-7 powered by VCCH. GP LED Blinking 2 Control Register Bit 0-7 powered by VCCH. GP LED Blinking 2 Control Register Bit 0-7 powered by VCCH. GP LED Blinking 2 Control Register Bit 0-7 powered by VCCH. O7h FCh R/W-Rh Reserved O7h FDh R/W O0h Reserved	07h	E5h	D/M	006	Hardware Monitor Thermal Output Pin Mapping Register
07h F7h R/W 00h Keyboard Lock Pin Mapping Register 07h F8h R/W 00h GP LED Blinking 1 Pin Mapping Register Bit 0-7 powered by VCCH. 07h F9h R/W 00h GP LED Blinking 1 Control Register Bit 0-7 powered by VCCH. 07h FAh R/W 00h GP LED Blinking 2 Pin Mapping Register Bit 0-7 powered by VCCH. 07h FBh R/W 00h GP LED Blinking 2 Control Register Bit 0-7 powered by VCCH. 07h FCh R/W-Rh Reserved 07h FDh R/W 00h Reserved	0711	1311	FVVV	UUII	Bit 0-7 powered by VCCH.
07h F8h R/W 00h GP LED Blinking 1 Pin Mapping Register Bit 0-7 powered by VCCH. 07h F9h R/W 00h GP LED Blinking 1 Control Register Bit 0-7 powered by VCCH. 07h FAh R/W 00h GP LED Blinking 2 Pin Mapping Register Bit 0-7 powered by VCCH. 07h FBh R/W 00h GP LED Blinking 2 Pin Mapping Register Bit 0-7 powered by VCCH. GP LED Blinking 2 Control Register Bit 0-7 powered by VCCH. 07h FCh R/W-Rh Reserved 07h FDh R/W 00h Reserved	07h	F6h	R/W	00h Hardware Monitor Alert Beep Pin Mapping Register	
07h F8h R/W 00h Bit 0-7 powered by VCCH. 07h F9h R/W 00h GP LED Blinking 1 Control Register Bit 0-7 powered by VCCH. 07h FAh R/W 00h GP LED Blinking 2 Pin Mapping Register Bit 0-7 powered by VCCH. 07h FBh R/W 00h GP LED Blinking 2 Control Register Bit 0-7 powered by VCCH. 07h FCh R/W-Rh Reserved 07h FDh R/W 00h Reserved	07h	F7h	R/W	00h	Keyboard Lock Pin Mapping Register
Bit 0-7 powered by VCCH. O7h F9h R/W O0h GP LED Blinking 1 Control Register Bit 0-7 powered by VCCH. O7h FAh R/W O0h GP LED Blinking 2 Pin Mapping Register Bit 0-7 powered by VCCH. O7h FBh R/W O0h GP LED Blinking 2 Control Register Bit 0-7 powered by VCCH. O7h FCh R/W-Rh Reserved O7h FDh R/W O0h Reserved	07h	F8h	R/W	00h	GP LED Blinking 1 Pin Mapping Register
07h F9h R/W 00h Bit 0-7 powered by VCCH. 07h FAh R/W 00h GP LED Blinking 2 Pin Mapping Register Bit 0-7 powered by VCCH. 07h FBh R/W 00h GP LED Blinking 2 Control Register Bit 0-7 powered by VCCH. 07h FCh R/W-Rh Reserved 07h FDh R/W 00h Reserved	0/11	1 011	1 (/ V V	5011	
Bit 0-7 powered by VCCH. O7h FAh R/W O0h GP LED Blinking 2 Pin Mapping Register Bit 0-7 powered by VCCH. O7h FBh R/W O0h GP LED Blinking 2 Control Register Bit 0-7 powered by VCCH. O7h FCh R/W-Rh Reserved O7h FDh R/W O0h Reserved	07h	F9h	R/M	00h	GP LED Blinking 1 Control Register
07h FAh R/W 00h Bit 0-7 powered by VCCH. 07h FBh R/W 00h GP LED Blinking 2 Control Register Bit 0-7 powered by VCCH. 07h FCh R/W-R h Reserved 07h FDh R/W 00h Reserved	0/11	1 311	1 (/ V V	3011	Bit 0-7 powered by VCCH.
Bit 0-7 powered by VCCH.	07h	FAh	R/W	00h	GP LED Blinking 2 Pin Mapping Register
07h FBh R/W 00h Bit 0-7 powered by VCCH. 07h FCh R/W-R h Reserved 07h FDh R/W 00h Reserved		17/11			
Bit 0-7 powered by VCCH.	07h	FBh	R/W	00h	
07h FDh R/W 00h Reserved					· · · · · · · · · · · · · · · · · · ·
					Reserved
07h FEh R/W 00h Reserved					
	07h	FEh	R/W	00h	Reserved

LDN	Index	R/W	Reset	Configuration Register or Action
07h	FFh	R/W	00h	Reserved

Table 8-11. Serial Port 3 Configuration Registers

LDN	Index	R/W	Reset	Configuration Register or Action
08h	30h	R/W	00h	Serial Port 3 Activate
08h	60h	R/W	03h	Serial Port 3 Base Address MSB Register
08h	61h	R/W	F8h	Serial Port 3 Base Address LSB Register
08h	70h	R/W	04h	Serial Port 3 Interrupt Level Select
08h	F0h	R/W	00h	Serial Port 3 Special Configuration Register 1
08h	F1h	R/W	50h	Serial Port 3 Special Configuration Register 2
08h	F2h	R/W	00h	Serial Port 3 Special Configuration Register 3
08h	F3h	R/W	7Fh	Serial Port 3 Special Configuration Register 4

Table 8-12. Serial Port 4 Configuration Registers

LDN	Index	R/W	Reset	Configuration Register or Action
09h	30h	R/W	00h	Serial Port 4 Activate
09h	60h	R/W	02h	Serial Port 4 Base Address MSB Register
09h	61h	R/W	F8h	Serial Port 4 Base Address LSB Register
09h	70h	R/W	04h	Serial Port 4 Interrupt Level Select
09h	F0h	R/W	00h	Serial Port 4 Special Configuration Register 1
09h	F1h	R/W	50h	Serial Port 4 Special Configuration Register 2
09h	F2h	R/W	00h	Serial Port 4 Special Configuration Register 3
09h	F3h	R/W	7Fh	Serial Port 4 Special Configuration Register 4

Note 1: All these registers can be read from all LDNs.

Note 2: When the ECP mode is not enabled, this register is read only as "04h", and cannot be written.

Note 3: When the bit 2 of the Primary Base Address LSB Register of Parallel Port is set to 1, the EPP mode cannot be enabled. Bit 0 of this register is always 0.

Note 4: These registers are read only unless the write enable bit (Index=F0h) is asserted.

8.2.1 Logical Device Base Address

The base I/O range of logical devices shown below is located in the base I/O address range of each logical device.

Table 8-13. Base Address of Logical Devices

Logical Devices	Address	Notes
LDN=0 FDC	Base + (2 - 5) and + 7	
LDN=1 SERIAL PORT 1	Base + (0 -7)	UART1
LDN=2 SERIAL PORT 2	Base1 + (0 -7)	UART2
LDN=3	Base1 + (0 -3)	SPP
PARALLEL PORT	Base1 + (0 -7)	SPP+EPP
	Base1 + (0 -3) and Base2 + (0 -3)	SPP+ECP
	Base1 + (0 -7) and Base2 + (0 -3)	SPP+EPP+ECP
	Base3	POST data port
LDN=4	Base1 + (0 -7)	Environment Controller
Environment Controller	Base2 + (0 -3)	PME#
LDN=5 KBC	Base1 + Base2	KBC
LDN=8, Serial Port 3	Base + (0 -7)	UART3
LDN=9, Serial Port 4	Base + (0 -7)	UART4

8.3 Global Configuration Registers (LDN: All)

8.3.1 Configure Control (Index=02h)

This register is **write only**. Its values are not sticky; that is to say, a hardware reset will automatically clear the bits, and does not require the software to clear them.

Bit	Description
7-2	Reserved
1	Returns to the "Wait for Key" state. This bit is used when the configuration sequence is completed.
0	Resets all logical devices and restores configuration registers to their power-on states.

8.3.2 Logical Device Number (LDN, Index=07h)

This register is used to select the current logical devices. By reading from or writing to the configuration of I/O, Interrupt, DMA and other special functions, all registers of the logical devices can be accessed. In addition, ACTIVATE command is only effective for the selected logical devices. This register is **read/write**.

8.3.3 Chip ID Byte 1 (Index=20h, Default=87h)

This register is the Chip ID Byte 1 and is **read only**. Bits [7:0]=87h when read.

8.3.4 Chip ID Byte 2 (Index=21h, Default=81h)

This register is the Chip ID Byte 2 and is read only. Bits [7:0]=81h when they are read.

8.3.5 Configuration Select and Chip Version (Index=22h, Default=00h)

Bit	Description				
7	Configuration Select(CS)				
	This bit is used to select the chip to be configured. When there are two IT8781F chips in a system,				
	and this bit is written into '1', this bit will select the chip with JP3=1 (power-on strapping value of				
	SOUT1) to be configured and chip with JP3=0 will exit the configuration mode.				
	When this bit is written into '0', this bit will select the chip with JP3=0 (power-on strapping value of				
	SOUT1) to be configured and chip with JP3=1 will exit the configuration mode.				
6-4	Reserved				
3-0	Version ID(VID)				

8.3.6 Clock Selection Register (Index=23h, Default=00h)

Bit	Description					
7-6	XLOCK Select(XS)					
	These two bits determine the XLOCK function.					
	00: Software XLOCK (default)					
	01: Reserved					
	10: Pin 48 (GP50)					
	11: Pin 11 (GP37)					
5	Reserved					
4	Clock Source Select of Watch Dog Timer(CSSWDT)					
	0: Internal oscillating clock (default)					
	1: External CLKIN					

Bit	Description
3-2	Delay Select of PWROK (SDP)
	00: PWROK will be delayed 300 ~600ms from VCC5V > 4.0V.
	01: PWROK will not be delayed from VCC5V > 4.0V.
	10: PWROK will be delayed 150 ~300ms from VCC5V > 4.0V.
	11: Reserved.
1	Reserved
0	CLKIN Frequency(CF)
	0: 48 MHz
	1: 24 MHz

8.3.7 Software Suspend and Flash I/F Control Register (Index=24h, Default=0000s0s0b, MB PnP)

Bit	Description
7-6	Reserved
	(Must be 0)
5	Reserved
	(Must be 0)
4	LPC Memory/FWM Write to Serial Flash I/F Enable (LMWSE)
	0: Disable (default)
	1: Enable
3	Flash I/F Address Segment 3 (FAS3)
	Range FFF0_0000h-FFFD_FFFFh, FFFE_0000h-FFFE_FFFFh)
	0: Disable
2	1: Enable
	Flash I/F Address Segment 2 (FAS2)
	Range (FFEF_0000h-FFEF_FFFFh, FFEE_0000h-FFEE_FFFFh) 0: Disable (default)
	1: Enable
1	Flash I/F Address Segment 1(FAS1)
	Range (FFFE 0000h FFFF FFFFh, 000E 0000h-000F FFFFh)
	0: Disable
	1: Enable
0	Software Suspend(SS)
	When bit 0 is set, the IT8781F enters the "Software Suspend" state. All the devices, except KBC,
	remain inactive until this bit is cleared or when the wake-up event occurs. The wake-up event
	occurs at any transition on signals RI1# (pin 119) and RI2# (pin 127).
	0: Normal
	1: Software Suspend

8.3.8 GPIO Set 1 Multi-function Pin Selection Register (Index=25h, Default=01h)

Bit	Description
7	Function Selection of pin 28 (FSP)
	0: SOUT4/CE_N
	When index EFh bit 0 and bit 1 are set "1", pin 28 is CE_N (default). Index EFh bit 0 and bit 1 are
	cleared to 0 and pin 28 is SOUT4 output.
	1: Reserved

Bit	Description
6	Function Selection of pin 29 (FSP)
	0: SIN4/SO
	1: General Purpose I/O 16 (GP16)
5	Function Selection of pin 30 (FSP)
	If bit 5 of index 2A is 1, select GP15 or RESETCON# function.
	0: RESETCON#
	1: General Purpose I/O 15 (GP15) .
4	Function Selection of pin 31 (FSP)
	If bit 1 of index 2A is 1, select SCRRST#; or GP14.
	0: Smart Card Reset(SCRRST#)
3	1: General Purpose I/O 14 (GP14) Function Selection of pin 32 (FSP)
3	If bit 1 of index 2A is 1, select SCR VCC# or GP13.
	0: Smart Card Power FET Control Output #
	1: General Purpose I/O 13 (GP13)
2	Function Selection of pin 33 (FSP)
	If bit 1 of index 2A is 1, select SCRIO or GP12.
	0: Smart Card Serial Data I/O (SCRIO) output
	1: General Purpose I/O 12 (GP12)
1	Function Selection of pin 34 (FSP)
	If bit 1 of index 2A is 1, select SCRCLK or GP11.
	0: Smart Card Clock (SCRCLK) output
	1: General Purpose I/O 11 (GP11)
0	Function Selection of pin 84, (FSP)
	When index 2C bit 3 (IDX2C3) =0, set 1 to select GP10.
	0: Reserved
	1: General Purpose I/O 10 (GP10)

8.3.9 GPIO Set 2 Multi-Function Pin Selection Register (Index=26h, Default=00h)

Bit	Description
7	Function Selection of pin 20(FSP)
	0: SOUT3
	1: General Purpose I/O 27 (GP27)
6	Function Selection of pin 21(FSP)
	0: SIN3
	1: General Purpose I/O 26 (GP26)
5	Function Selection of pin 22 (FSP)
	0: DCD4#
	1: General Purpose I/O 25 (GP25)
4	Function Selection of pin 23(FSP)
	0: RI4#
	1: General Purpose I/O 24 (GP24)
3	Function Selection of pin 24, (FSP)
	if bit2 of index 2A is 1,selec CTS4, disable SI output,
	0: CTS4#/SI
	1: General Purpose I/O 23 (GP23)
2	Function Selection of pin 25, (FSP)

Bit	Description	
	If bit 2 of index 2A is 1, select DTR4# output; otherwise SCK or GP22.	
	0: DTR4#/SCK	
	1: General Purpose I/O 22 (GP22), if index EFh, both bit 0 and bit1 are set to "0".	
1	Function Selection of pin 26(FSP)	
	0: RTS4#	
	1: General Purpose I/O 21 (GP21)	
0	Function Selection of pin 27(FSP)	
	0: DSR4#	
	1: General Purpose I/O 20 (GP20)	

8.3.10 GPIO Set 3 Multi-Function Pin Selection Register (Index=27h, Default=00h)

If the enabled bits are not set, the multi-function pins will perform the original functions. Conversely, if they are set, they will perform the GPIO functions. This register can be read from any LDN, but can only be written if LDN=07h.

Bit	Description
7	Function Selection of pin 11(FSP)
	0: Fan Tachometer Input 3 (FAN_TAC3)
	1: General Purpose I/O 37 (GP37)
6	Function Selection of pin 12(FSP)
	0: Fan Control Output 3 (FAN_CTL3)
	1: General Purpose I/O 36 (GP36)
5	Function Selection of pin 13(FSP)
	0: DCD3#
	1: General Purpose I/O 35 (GP35)
4	Function Selection of pin 14(FSP)
	0: RI3#
	1: General Purpose I/O 34 (GP34)
3	Function Selection of pin 16(FSP)
	0: CTS3#
	1: General Purpose I/O 33 (GP33)
2	Function Selection of pin 17(FSP)
	0: DTR3#(output)
	1: General Purpose I/O 32 (GP32)
1	Function Selection of pin 18(FSP)
	0: RTS3# (output)
	1: General Purpose I/O 31 (GP31)
0	Function Selection of pin 19(FSP)
	0: DSR3#
	1: General Purpose I/O 30 (GP30)

8.3.11 GPIO Set 4 Multi-Function Pin Selection Register (Index=28h, Default=40h)

Bit	Description
7	Function Selection of pin 66, (FSP)
	If bit 3 of INDEX 2A register is 0, select IRTX or GP47.

Bit	Description
	0: Infrared Transmit Output (IRTX)
	1: General Purpose I/O 47 (GP47)
6	Function Selection of pin 70, (FSP)
	If bit 3 of INDEX 2A register is 0, select IRRX or GP46.
	0: Infrared Receive Input (IRRX)
	1: General Purpose I/O 46 (GP46)
5	Function Selection of pin 71(FSP)
	0: SUSB#
	1: General Purpose I/O 45 (GP45)
4	Function Selection of pin 72(FSP)
	0: Power On Request Output # (PWRON#)
	1: General Purpose I/O 44 (GP44)
3	Function Selection of pin 75(FSP)
	0: Main Power Switch Button Input # (PANSWH#)
	1: General Purpose I/O 43 (GP43)
2	Function Selection of pin 76(FSP)
	0: Power Supply ON-Off Control Output # (PSON#)
	1: General Purpose I/O 42 (GP42)
1	Function Selection of pin 78 (FSP)
	If bit 3 of INDEX 2C register is 0, PWROK or GP41.
	0: PWROK
	1: General Purpose I/O 41 (GP41)
0	Function Selection of pin 79(FSP)
	0: 3VSBSW#.
	When index 2C bit 3 (IDX2C3)= 0, select 3VSBSW#.
	1: General Purpose I/O 40 (GP40)

8.3.12 GPIO Set 5 Multi-Function Pin Selection Register (Index=29h, Default=00h)

Bit	Description
	Function Selection of pin 6, 3, 128,127, 126(FSP)
7	0: SIN2, DSR2#, CTS2#, RI2, DCD2#.
	1: Reserved.
	Function Selection of pin 83, 82, 81, 80, 45(FSP)
6	0: MCLK, MDAT, KCLK, KDAT, KRST#
	1: General Purpose I/O 56, 57, 60, 61, 62
5	Function Selection of pin 85 (FSP)
	0: RSMRST#.
	RSMRST# is an open-drain output function, which is active low about 52ms when VCCH5V is
	powered on.
	Index 2C bit 3 (IDX2C3)= 0
	1: General Purpose I/O 55 (GP55).
4	Function Selection of pin 73(FSP)
	0: Power Management Event # (PME#)
	1: General Purpose I/O 54 (GP54)

Bit		Description
3	Function Selection of pin 77(FSP)	<u> </u>
	0: SUSC#	
	1: General Purpose I/O 53 (GP53)	
2	Function Selection of pin 9(FSP)	
	0: Fan Tachometer Input 2 (FAN_TAC2)	
	1: General Purpose I/O 52 (GP52)	
1	Function Selection of pin 10(FSP)	
	0: Fan Control Output 2 (FAN_CTL2)	
	1: General Purpose I/O 51 (GP51)	
0	Function Selection of pin 48(FSP)	
	0: SCRPSNT# input	
	Index 2A bit 1 (IDX2A1)= 0	
	1: General Purpose I/O 50 (GP50)	

8.3.13 Extended 1 Multi-Function Pin Selection Register (Index=2Ah, Default=00h)

This register can be read from any LDN, but can only be written if LDN=07h.

Bit	Description
7	Enable 3VSBSW# (E3VSBSW)
•	This function is for System Suspend-to-RAM.
	0: 3VSBSW# is always inactive.
	1: 3VSBSW# is enabled. It will be (NOT SUSB#) NAND SUSC#.
6	Multi-function Selection of pin 53(MSP)
	0: MTRB#
	1: External Thermal Sensor Data/THERM_O#
	(EC index 0Ah/bit<6:4>≠000b external thermal sensor host enable, pin 53 becomes external
	thermal function.)
5	Extended Multi-function Selection of pin 30 (EMSP)
	0: Reserved
	1: Determined by Index 25h bit 5>
4	Function Selection of pin 78(FSP)
	0: PWROK
	1: Determined by Index 28h <bit 1=""></bit>
	If index 28 bit 1 (IDX281)=1, select GP41.
3	Function Selection of pin 66, 70(FSP)
	0: IRTX/IRRX
2	1: Determined by bit7, 6 of GPIO Set 4 Multi-function Selection Register (Index 28h) GPIO
2	Function Selection of pin 24,25(FSP)
	0: SI/SCK determined by bit3, 2 of GPIO Set 2 Multi-function Selection Register (Index 26h) GPIO
	1: DTR4#
1	Extended Multi-function Selection of pin 31,32,33,34(EMSP)
	0: UART or GPIO pin ,
	Determined by bit 4,3,2,1 of GPIO Set 1 Multi-function Selection Register (Index 25h)
	1: Pin 31, 32, 33, 34, 48 are also selected as SCR function.
0	3VSBSW# Timing Control (3VSBSWTC)
	0: 3VSBSW# goes high leading PWROK for about 1ms
	1: 3VSBSW# goes high leading PWROK for about 120~160ms

8.3.14 Logical Block Lock Register (Index=2Bh, Default=00h)

When the lock function is enabled (bit7=1 or XLOCK# is low), configuration registers of the selected logical block, clock selection register (index = 23h), and this register will become read-only.

Bit	Description
7	Software Lock Enable(SLE)
	Once this bit is set to 1 by software, it only can be cleared by hardware reset.
	0: The configuration lock is controlled by XLOCK#. (Default)
	1: The logic blocks of the configuration register are selected by bit 6-0 and this register is read-
6	only. GPIO Select (GPIOS)
"	· · · ·
	GPIO configuration registers are programmable. GPIO configuration registers are read-only if LOCK is enabled.
5	KBC (Keyboard) and KBC (Mouse) Select (KMS)
	0: KBC (Keyboard) and KBC (Mouse) configuration registers are programmable.
	1: KBC (Keyboard) and KBC (Mouse) configuration registers are read-only if LOCK is enabled.
4	EC Select (ECS)
	0: EC configuration registers are programmable.
	1: EC configuration registers are read-only if LOCK is enabled.
3	Parallel Port Select (PPS)
	0: Parallel Port configuration registers are programmable.
	1: Parallel Port configuration registers are read-only if LOCK is enabled.
2	Serial Port 2 Select. (SP2S)
	0: Serial Port 2,4 configuration registers are programmable.
	1: Serial Port 2 4 configuration registers are read-only if LOCK is enabled.
1	Serial Port 1 Select. (SP1S)
	0: Serial Port 1,3 configuration registers are programmable.
	1: Serial Port 1,3 configuration registers are read-only if LOCK is enabled.
0	FDC Select (FSCS)
	The lock function will not affect bit 0 of FDC special configuration register (software write protect).
	0: FDC configuration registers are programmable.
	1: FDC configuration registers are read-only (except Software Write Protect bit) if LOCK is enabled.
	enableu.

8.3.15 Extended 2 Multi-Function Pin Selection Register (Index=2Ch, Default=03h)

This register can be read from any LDN, but can only be written if LDN=07h.

Bit	Description
7	Reserved
6	Reserved
5	Reserved
4	Reserved
3	Reserved
	Must be 0.
2	Reserved
	Must be 0.
1	Enable VIN7 Internal Voltage Divider(EVIVD)
	This bit enables and switches VIN7 (pin 91) to internal voltage divider for VCCH5V.
	0: Disable
	1: Enable

Bit	Description
0	Enable ATXPG, VIN3 Internal Voltage Divider(EAVIVD)
	This bit enables ATXPG (pin 95) and switches the VIN3 function to the internal voltage divider for VCC5V
	0: Disable
	1: Enable

8.3.16 Test 1 Register (Index=2Eh, Default=00h)

This register cannot be configured because it is a test register and reserved for ITE only.

8.3.17 Test 2 Register (Index=2Fh, Default=00h)

This register cannot be configured because it is a test register and reserved for ITE only.

8.4 FDC Configuration Registers (LDN=00h)

8.4.1 FDC Activate (Index=30h, Default=00h)

Bit	Description	
7-1	Reserved	
0	FDC Enable(FDCE)	
	1: Enable	
	0: Disable	

8.4.2 FDC Base Address MSB Register (Index=60h, Default=03h)

Bit	Description
7-4	Base Address [15:12](BA)
	Read only, with "0h" for Base Address [15:12].
3-0	Base Address [11:8] (BA)
	Mapped as Base Address [11:8].

8.4.3 FDC Base Address LSB Register (Index=61h, Default=F0h)

Bit	Description
7-3	Base Address [7:3](BA) Read/write, mapped as Base Address [7:3].
2-0	Reserved Read only as "000b."

8.4.4 FDC Interrupt Level Select (Index=70h, Default=06h)

Bit	Description
7-4	Reserved
	With default "0h"
3-0	Select the interrupt level Note1 for FDC(SIL).

8.4.5 FDC DMA Channel Select (Index=74h, Default=02h)

Bit	Description
7-3	Reserved
	With default "00h"
2-0	Select the DMA channel Note2 for FDC(SDMA).

8.4.6 FDC Special Configuration Register 1 (Index=F0h, Default=00h)

Bit	Description
7-5	Reserved
	With default "00h"
4	FDD I/F Input pin internal pull-up control (FIPU)
	0: Disable
	1: Enable
3	IRQ Type (IT)
	1: IRQ sharing

www.ite.com.tw 45 IT8781F V0.2.2

Bit	Description	
	0: Normal IRQ	
2	Swap Floppy Drives A,B Enable(SFDE)	
	1: Swap Floppy Drives A, B	
	0: Normal	
1	Floppy Operation Mode(FOM)	
	1: 3-mode	
	0: AT-mode	
0	Software Write Protect Enable(SWPE)	
	1: Software Write Protect	
	0: Normal	

8.4.7 FDC Special Configuration Register 2 (Index=F1h, Default=00h)

Bit	Description
7-4	Reserved
	With default "00h"
3-2	FDD B Data Rate Table Select (FBDRTS)
	(DRT1-0)
1-0	FDD A Data Rate Table Select (FADRTS)
	(DRT1-0)

8.5 Serial Port 1 Configuration Registers (LDN=01h)

8.5.1 Serial Port 1 Activate (Index=30h, Default=00h)

Bit	Description	
7-1	Reserved	
0	Serial Port 1 Enable(SP1E)	
	1: Enable	
	0: Disable	

8.5.2 Serial Port 1 Base Address MSB Register (Index=60h, Default=03h)

Bit	Description
7-4	Base Address[15:12] (BA)
	Read only as "0h" for Base Address[15:12]
3-0	Base Address[11:8] (BA)
	Read/write, mapped as Base Address[11:8]

8.5.3 Serial Port 1 Base Address LSB Register (Index=61h, Default=F8h)

Bit	Description
7-3	Base Address[7:3] (BA)
	Read/write, mapped as Base Address[7:3]
2-0	Reserved
	Read only as "000b"

8.5.4 Serial Port 1 Interrupt Level Select (Index=70h, Default=04h)

Bit	Description
7-4	Reserved
	With default "0h"
3-0	Select interrupt level Note1 for Serial Port 1(SIL)

8.5.5 Serial Port 1 Special Configuration Register 1 (Index=F0h, Default=00h)

Bit	Description
7-4	Reserved
3	Reserved
	With default "0"
2-1	Clock Source(CS)
	00: 24 MHz/13 (Standard)
	01: 24 MHz/12
	10: 24 MHz
	11: 24 MHz/1.625
0	IRQ Type(IT)
	1: IRQ sharing
	0: Normal

8.6 Serial Port 2 Configuration Registers (LDN=02h)

8.6.1 Serial Port 2 Activate (Index=30h, Default=00h)

Bit	Description	
7-1	Reserved	
0	Serial Port 2 Enable(SP2E)	
	1: Enable	
	0: Disable	

8.6.2 Serial Port 2 Base Address MSB Register (Index=60h, Default=02h)

Bit	Description
7-4	Base Address[15:12] (BA)
	Read only with "0h" for Base Address [15:12]
3-0	Base Address[11:8] (BA)
	Read/write, mapped as Base Address [11:8]

8.6.3 Serial Port 2 Base Address LSB Register (Index=61h, Default=F8h)

Bit	Description
7-3	Base Address[7:3] (BA)
	Read/write, mapped as Base Address [7:3]
2-0	Reserved
	Read only as "000b"

8.6.4 Serial Port 2 Interrupt Level Select (Index=70h, Default=03h)

Bit	Description
7-4	Reserved
	With default "0h"
3-0	Select interrupt level Note1 for Serial Port 2(SIL)

8.6.5 Serial Port 2 Special Configuration Register 1 (Index=F0h, Default=00h)

Bit	Description
7-4	Reserved
3	Reserved
	With default "0"
2-1	Clock Source(CS)
	00: 24 MHz/13 (Standard)
	01: 24 MHz/12
	10: 24 MHz
	11: 24 MHz/1.625
0	IRQ Type(IT)
	1: IRQ sharing
	0: Normal

8.7 Parallel Port Configuration Registers (LDN=03h)

8.7.1 Parallel Port Activate (Index=30h, Default=00h)

Bit	Description	
7-1	Reserved	
0	Parallel Port Enable(PPE)	
	1: Enable	
	0: Disable	

8.7.2 Parallel Port Primary Base Address MSB Register (Index=60h, Default=03h)

Bit	Description
7-4	Base Address[15:12] (BA)
	Read only as "0h" for Base Address[15:12]
3-0	Base Address[11:8] (BA)
	Read/write, mapped as Base Address[11:8]

8.7.3 Parallel Port Primary Base Address LSB Register (Index=61h, Default=78h)

If the bit 2 is set to 1, the EPP mode is disabled automatically.

Bit	Description
7-2	Base Address[7:2] (BA)
	Read/write, mapped as Base Address[7:2]
1-0	Reserved
	Read only as "00b"

8.7.4 Parallel Port Secondary Base Address MSB Register (Index=62h, Default=07h)

Bit	Description
7-4	Base Address[15:12] (BA)
	Read only as "0h" for Base Address[15:12]
3-0	Base Address[11:8] (BA)
	Read/write, mapped as Base Address[11:8]

8.7.5 Parallel Port Secondary Base Address LSB Register (Index=63h, Default=78h)

Bit	Description	
7-2	Base Address[7:2] (BA)	
	Read/write, mapped as Base Address[7:2]	
1-0	Reserved	
	Read only as "00b"	

8.7.6 Parallel Port Interrupt Level Select (Index =70h, Default=07h)

Bit	Description
7-4	Reserved
	With default "0h"
3-0	Select interrupt level Note1 for Parallel Port(SIL)

8.7.7 Parallel Port DMA Channel Select (Index=74h, Default=03h)

Bit	Description
7-3	Reserved
	With default "00h"
2-0	Select DMA channel Note2 for Parallel Port(SDMA)

8.7.8 Parallel Port Special Configuration Register (Index=F0h, Default=03h)

Bit	Description	
7-4	Reserved	
3	POST Data Port Enable(PDPE)	
	1: POST Data Port Disable	
	0: POST Data Port Enable	
2	IRQ Type(IT)	
	1: IRQ sharing	
	0: Normal	
1-0	Parallel Port Modes(PPM)	
	00 : Standard Parallel Port mode (SPP)	
	01 : EPP mode	
	10 : ECP mode	
	11 : EPP mode & ECP mode	
	These bits are independent.	
	If bit 1 is set, ECP mode is enabled.	
	If bit 0 is set, EPP mode is enabled except when Parallel Port Primary Base Address LSB Register	
	bit 2 is set to 1 in accordance with the EPP specification.	

8.8 Environment Controller Configuration Registers (LDN=04h)

8.8.1 Environment Controller Activate Register (Index=30h, Default=00h)

Bit	Description	
7-1	Reserved	
0	Environment Controller Enable(ECE)	
	1: Enable	
	0: Disable	
	This is a read/write register.	

8.8.2 Environment Controller Base Address MSB Register (Index=60h, Default=02h)

Bit	Description
7-4	Base Address[15:12] (BA)
	Read only as "0h" for Base Address[15:12]
3-0	Base Address[11:8] (BA)
	Read/write, mapped as Base Address[11:8]

8.8.3 Environment Controller Base Address LSB Register (Index=61h, Default=90h)

Bit	Description
7-3	Base Address[7:3] (BA)
	Read/write, mapped as Base Address[7:3]
2-0	Reserved
	Read only as "000b"

8.8.4 PME Direct Access Base Address MSB Register (Index=62h, Default=02h)

Bit	Description
7-4	Base Address[15:12] (BA)
	Read only as "0h" for Base Address[15:12]
3-0	Base Address[11:8] (BA)
ĺ	Read/write, mapped as Base Address[11:8]

8.8.5 PME Direct Access Base Address LSB Register (Index=63h, Default=30h)

Bit	Description
7-3	Base Address[7:3] (BA)
	Read/write, mapped as Base Address[7:3]
2-0	Reserved
	Read only as "000b."

8.8.6 Environment Controller Interrupt Level Select (Index=70h, Default=09h)

Bit	Description
7-4	Reserved With default "0h"
3-0	Select interrupt level Note1 for Environment Controller(SIL)

www.ite.com.tw 51 IT8781F V0.2.2

8.8.7 APC/PME Event Enable Register (PER) (Index=F0h, Default=00h)

Bit	Description	
7	VCCH Power Off(VPO)	
	It is set to 1 when VCCH is off. Write 1 to clear this bit. This bit is ineffective if 0 is written to this bit.	
6	Reserved	
5	Reserved	
	With default "0h"	
4	PS2 Mouse Event Enable(PMEE)	
	0: PS/2 Mouse event disabled	
	1: PS/2 Mouse event enabled	
3	Keyboard Event Enable(KEE)	
	0: Keyboard event disabled	
	1: Keyboard event enabled	
2-0	Reserved	
	With default "000"	

8.8.8 APC/PME Status Register (PSR) (Index=F1h, Default=00h)

Bit	Description
7	VCC Power On(VCCPO)
	It is set to 1 when VCC is on at the previous AC power failure and 0 when VCC is off.
6	Reserved
5	Reserved
4	PS2 Mouse Event Detect(PMED)
	0: No PS/2 Mouse event detected
	1: PS/2 Mouse event detected
3	Keyboard Event Detect
	0: No Keyboard event detected
	1: Keyboard event detected
2-0	Reserved
	With default "000"

8.8.9 APC/PME Control Register 1 (PCR 1) (Index=F2h, Default=00h)

Bit	Description					
7	PER and PSR Normal run Access Enabled(PPNRAE)					
	0: Enable					
	1: Disable					
6	PME# Output Control(POC)					
	0: Enable					
	1: Disable					
5	Previous VCC State(PVS)					
	This bit is restored automatically to the previous VCC state before the power failure occurs.					
	1: Enable					
	0: Disable					
4	Reserved					
3	Keyboard Event Selection(KES)					
	This bit is for Keyboard event mode selection when VCC is on(KEMSVO).					
	1: Determined by PCR 2					

Bit	Description	
	0: Pulse falling edge on KCLK	
2	Mouse Event when VCC off(MEVF)	
	1: Click Key twice sequentially	
	0: Pulse falling edge on MCLK	
1	Mouse Event when VCC on(MEVO)	
	1: Click Key twice sequentially	
	0: Pulse falling edge on MCLK	
0	Reserved	
	With default "0"	

8.8.10 Environment Controller Special Configuration Register (Index=F3h, Default=00h)

Bit	Description
7-6	Scan Frequency of H/W Monitor(SFHM)
	00: 1Hz
	01: 2Hz
	10: 4Hz
	11: 8Hz
5-1	Reserved
0	IRQ Type(IT)
	1: IRQ sharing
	0: Normal

8.8.11 APC/PME Control Register 2 (PCR 2) (Index=F4h, Default=00h)

Bit	Description					
7	Disable KCLK/KDAT and MCLK/MDAT auto-swap(DKMA)					
	0: Enable					
	1: Disable					
6	Reserved					
5	PSON# State when VCCH Switched from off to on.(PSVS)					
	0: High-Z (The default is power off.)					
	1: Inverting of PSIN					
4	Mask PANSWH# Power-on Event(MPPOE)					
	1: Enable					
	0: Disable					
3-2	Key Number of Keyboard Power-up Event(KNKPUE)					
	00: 5 Key string mode, 3 keys simultaneous mode					
	01: 4 Key string mode, 2 keys simultaneous mode					
	10: 3 Key string mode, 1 key simultaneous mode					
	11: 2 Key string mode, Reserved (Not Valid for Simultaneous mode)					
1-0	Keyboard Power-up Event Mode Selection(KPEMS)					
	00: KCLK falling edge					
	01: Key string mode					
	10: Simultaneous Key Stroke mode					
	11: Reserved					

8.8.12 APC/PME Special Code Index Register (Index=F5h)

Bit	Description	
7-0	Reserved	
	Must be "00".	

8.8.13 APC/PME Special Code Data Register (Index=F6h)

Bit		Description				
7-0	Reserved					
	Must be "00".					

8.9 KBC (keyboard) Configuration Registers (LDN=05h)

8.9.1 KBC (keyboard) Activate (Index=30h, Default=01h)

Bit	Description	
7-1	Reserved	
0	KBC (keyboard) Enable(KBCE)	
	1: Enable	
	0: Disable	

8.9.2 KBC (keyboard) Data Base Address MSB Register (Index=60h, Default=00h)

Bit	Description
7-4	Base Address[15:12](BA)
	Read only as "0h" for Base Address [15:12]
3-0	Base Address[11:8] (BA)
	Read/write, mapped as Base Address [11:8]

8.9.3 KBC (keyboard) Data Base Address LSB Register (Index=61h, Default=60h)

Bit	Description
7-0	Base Address[7:0] (BA)
	Read/write, mapped as Base Address[7:0]

8.9.4 KBC (keyboard) Command Base Address MSB Register (Index=62h, Default=00h)

Bit	Description
7-4	Base Address[15:12] (BA)
	Read only as "0h" for Base Address[15:12]
3-0	Base Address[11:8] (BA)
	Read/write, mapped as Base Address[11:8]

8.9.5 KBC (keyboard) Command Base Address LSB Register (Index=63h, Default=64h)

Bit	Description
7-0	Base Address[7:0] (BA)
	Read/write, mapped as Base Address[7:0]

8.9.6 KBC (keyboard) Interrupt Level Select (Index=70h, Default=01h)

Bit	Description
7-4	Reserved With default "0h"
3-0	Select interrupt level Note1 for KBC (keyboard)

8.9.7 KBC (keyboard) Interrupt Type (Index=71h, Default=02h)

This register indicates the type of interrupt set for KBC (keyboard) and is **read only** as "02h" when bit 0 of the KBC (keyboard) Special Configuration Register is cleared. When bit 0 is set, the interrupt type can be selected as level or edge trigger.

Bit	Descri	otion
7-2	Reserved	
1	Interrupt Level(IL)	
	1: High level	
	0: Low level	
0	Interrupt Type(IT)	
	1: Level type	
	0: Edge type	

8.9.8 KBC (keyboard) Special Configuration Register (Index=F0h, Default=08h)

Bit	Description
7-5	Reserved
4	IRQ Type(IT)
	1: IRQ sharing
	0: Normal
3	KBC Clock(KC)
	1: KBC's clock 8 MHz
	0: KBC's clock 12 MHz
2	KBC Key Lock(KKL)
	1: Key lock enabled
	0: Key lock disabled
1	Interrupt Type Change Enable(ITCE)
	1: The interrupt type of KBC (keyboard) can be changed.
	0: The interrupt type of KBC (keyboard) is fixed.
0	Reserved

8.10 KBC (mouse) Configuration Registers (LDN=06h)

8.10.1 KBC (mouse) Activate (Index=30h, Default=00h)

Bit	Description	
7-1	Reserved	
0	KBC (mouse) Enable(KE)	
	1: Enable	
	0: Disable	

8.10.2 KBC (mouse) Interrupt Level Select (Index=70h, Default=0Ch)

Bit	Description
7-4	Reserved With default "0h"
3-0	Select interrupt level Note1 for KBC/mouse(SIL)

8.10.3 KBC (mouse) Interrupt Type (Index=71h, Default=02h)

This register indicates the interrupt type used for KBC (mouse) and is **read only** as "02h" when bit 0 of the KBC (mouse) Special Configuration Register is cleared. When bit 0 is set, the interrupt type can be selected as level or edge trigger.

Bit	Description
7-2	Reserved
1	Interrupt Level(IL) 1: High level 0: Low level
0	Interrupt Type(IT) 1: Level type 0: Edge type

8.10.4 KBC (mouse) Special Configuration Register (Index=F0h, Default=00h)

Bit	Description
7-2	Reserved
	With default "00h"
1	IRQ Type(IT)
	1: IRQ sharing
	0: Normal
0	Interrupt Type Change Enable(ITCE)
	1: The interrupt type of KBC (mouse) can be changed.
	0: The interrupt type of KBC (mouse) is fixed.

8.11 GPIO Configuration Registers (LDN=07h)

8.11.1 SMI# Normal Run Access Base Address MSB Register (Index=60h, Default=00h)

Bit	Description	
7-4	Base Address [15:12] (BA)	
	Read only as "0h" for Base Address [15:12]	
3-0	Base Address [11:8] (BA)	
	Read/write, mapped as Base Address [11:8]	

8.11.2 SMI# Normal Run Access Base Address LSB Register (Index=61h, Default=00h)

Bit	Description
7-2	Base Address [7:2] (BA)
	Read/write, mapped as Base Address [7:2]
1-0	Read only as "00b"

8.11.3 Simple I/O Base Address MSB Register (Index=62h, Default=00h)

Bit	Description
7-4	Base Address [15:12] (BA)
	Read only as "0h" for Base Address [15:12]
3-0	Base Address [11:8] (BA)
	Read/write, mapped as Base Address [11:8]

8.11.4 Simple I/O Base Address LSB Register (Index=63h, Default=00h)

Bit	Description
7-0	Base Address [7:0] (BA)
	Read/write, mapped as Base Address[7:0]

8.11.5 Serial Flash I/F Base Address MSB Register (Index=64h, Default=00h)

Bit	Description
7-4	Base Address [15:12] (BA)
	Read only as "0h" for Base Address [15:12]
3-0	Base Address [11:8] (BA)
	Read/write, mapped as Base Address [11:8]

8.11.6 Serial Flash I/F Base Address LSB Register (Index=65h, Default=00h)

Bit	Description
7-3	Base Address [7:3] (BA)
	Read/write, mapped as Base Address [7:3]
2-0	Read only as "000b"

8.11.7 Panel Button De-bounce Interrupt Level Select Register (Index=70h, Default=00h)

Bit	Description
7-4	Reserved
3-0	Select interrupt level Note1 for Panel Button De-bounce(SIL)

8.11.8 Watch Dog Timer 1, 2, 3 Control Register (Index=71h,81h,91h Default=00h)

Bit	Description
7	WDT Timeout Enable(WTE)
	1: Disable.
	0: Enable.
6	WDT Reset upon Mouse Interrupt(WRKMI)
	0: Disable.
	1: Enable.
5	WDT Reset upon Keyboard Interrupt(WRKBI)
	0: Disable.
	1: Enable.
4	Reserved
3-2	Reserved
1	Force Time-out(FTO)
	This bit is self-clearing.
0	WDT Status(WS)
	1: WDT value reaches 0.
	0: WDT value is not 0.

8.11.9 Watch Dog Timer 1, 2, 3 Configuration Register (Index=72h, 82h, 92h Default=001s0000b)

Bit	Description
7	WDT Time-out Value Select 1 (WTVS)
	1: Second
	0: Minute
6	WDT Output through KRST (Pulse) Enable(WOKE)
	1: Enable
	0: Disable
5	WDT Time-out value Extra select(WTVES)
	1: 64ms x WDT Timer-out value (default = 4s)
	0: Determined by WDT Time-out value select 1 (bit 7 of this register)
4	WDT Output through PWROK (Pulse) Enable(WOPE)
	1: Enable
	0: Disable
	During LRESET#, this bit is selected by JP7 power-on strapping option
3-0	Select interrupt level Note1 for WDT(SIL)

8.11.10 Watch Dog Timer 1,2,3 Time-Out Value (LSB) Register (Index=73h,83h,93h, Default=38h)

Bit	Description
7-0	WDT Time-out Value 7-0(WTV)

8.11.11 Watch Dog Timer 1,2,3 Time-Out Value (MSB) Register (Index=74h,84h,94h Default=00h)

Bit	Description	
7-0	WDT Time-out Value 15-8(WTV)	

8.11.12 GPIO Pin Set 1, 2, 3, 4, and 5 Polarity Registers (Index=B0h, B1h, B2h, B3h, and B4h, Default=00h)

These registers are used to program the GPIO pin type as polarity inverting or non-inverting.

Bit	Description
7-0	GPIO Polarity Select(GPIOPS)
	1: Inverting
	0: Non-inverting

8.11.13 GPIO Pin Set 1, 2, 3, 4, and 5 Pin Internal Pull-up Enable Registers (Index=B8h, B9h, BAh, BBh, and BCh, Default=20h, 00h, 00h, 00h, and 00h)

These registers are used to enable the GPIO pin internal pull-up. (There is no internal P/U function for GPIO set 2.)

Bit	Description
7-0	GPIO pin internal pull-up(GPIOPIP)
	1: Enable
	0: Disable

8.11.14 Simple I/O Set 1, 2, 3, 4 and 5 Enable Registers (Index=C0h, C1h, C2h, C3h, and C4h, Default=01h, 00h, 00h, 40h, 00h and 00h)

These registers are used to determine the GPIO pin function.

Bit	Description
7-0	GPIO pin Function Select(GPIOPFS) 1: Simple I/O function 0: Alternate function

8.11.15 Simple I/O Set 1, 2, 3, 4, and 5Output Enable Registers (Index=C8h, C9h, CAh, CBh, and CCh Default=01h, 00h, 00h, 40h, and 00h)

These registers are used to determine the direction of the Simple I/O.

Bit	Description
7-0	GPIO pin IN/OUT Select(GPIOPIOS)
	0: Input mode
	1: Output mode

8.11.16 Panel Button De-bounce 0 Input Pin Mapping Registers (Index=E0h, Default=00h)

	Bit	Description
Ī	7	Reserved
	6	IRQ Enable(IRQE)

Bit	Description
	1: Enable
	0: Disable
5-0	Input pin Location(IPL)
	Please see note 4, the location mapping table.

8.11.17 Panel Button De-bounce 1 Input Pin Mapping Registers (Index=E1h, Default=00h)

Bit	Description
7-6	Reserved
5-0	Input pin Location(IPL)
	Please see note 4, the location mapping table.

8.11.18 IRQ External Routing 1-0 Input Pin Mapping Registers (Index=E3h-E2h, Default=00h)

Bit	Description
7	Reserved
6	IRQ Enable(IE)
	1: Enable
	0: Disable
5-0	Input pin Location(IPL)
	Please see note 4, the location mapping table.

8.11.19 IRQ External Routing 1-0 Interrupt Level Selection Register (Index=E4h, Default=00h)

Bit	Description
7-4	Routing 1 Interrupt Level Selection(R1ILS)
	Select the interrupt level Note1 for IRQ External Routing 1
3-0	Routing 0 Interrupt Level Selection(R0ILS)
	Select the interrupt level Note1 for IRQ External Routing 0

8.11.20 SPI-Function Pin Selection Register (Index=EFh, Default=03h)

Bit	Description
7-2	Reserved
1-0	SPI Chip-Sel Selection (SPICSS)
	Bit 1 and bit 0 need to be kept at the same polarity.
	11: Pin 28 is CE_N output and pin 25 is SCK output.
	00: SOUT4

8.11.21 SMI# Control Register 1 (Index=F0h, Default=00h)

Bit	Description
7	Enables the generation of an SMI# due to Serial Port 3's IRQ (EN_S3IRQ)
6	Enables the generation of an SMI# due to KBC (Mouse)'s IRQ (EN_MIRQ).
5	Enables the generation of an SMI# due to KBC (Keyboard)'s IRQ (EN_KIRQ).
4	Enables the generation of an SMI# due to Environment Controller's IRQ (EN_ECIRQ).
3	Enables the generation of an SMI# due to Parallel Port's IRQ (EN_PIRQ).
2	Enables the generation of an SMI# due to Serial Port 2's IRQ (EN_S2IRQ).
1	Enables the generation of an SMI# due to Serial Port 1's IRQ (EN_S1IRQ).

www.ite.com.tw 61 IT8781F V0.2.2

Bit	Description
0	Enables the generation of an SMI# due to FDC's IRQ (EN_FIRQ).

8.11.22 SMI# Control Register 2 (Index=F1h, Default=00h)

Bit	Description
7	Reserved
6	SMI Trigger Type(STT)
	0: Edge trigger
	1: Level trigger
5-4	Reserved
	Must be 0
3	Reserved
2	Enables the generation of an SMI# due to WDT's IRQ (EN_WDT)
1	Enables the generation of an SMI# due to Serial Port 4's IRQ (EN_S4IRQ)
0	Enables the generation of an SMI# due to PBD's IRQ (EN_PBD)

8.11.23 SMI# Status Register 1 (Index=F2h, Default=00h)

This register is used to read the status of SMI# inputs.

Bit	Description
7	Serial Port 3's IRQ(SP3I)
	0: None detected
	1: Detected
6	KBC (PS/2 Mouse)'s IRQ(KMI)
	0: None detected.
	1: Detected.
5	KBC (Keyboard)'s IRQ(KBI)
	0: None detected.
	1: Detected.
4	Environment Controller's IRQ(ECI)
	0: None detected.
	1: Detected.
3	Parallel Port's IRQ(PPI)
	0: None detected.
	1: Detected.
2	Serial Port 2's IRQ(SP2I)
	0: None detected.
	1: Detected.
1	Serial Port 1's IRQ(SP1I)
	0: None detected.
	1: Detected.
0	FDC's IRQ(FI)
	0: None detected.
	1: Detected.

8.11.24 SMI# Status Register 2 (Index=F3h, Default=00h)

This register is used to read the status of SMI# inputs.

Bit	Des	scription
7-6	Panel Button De-bounce Status 1-0(PBDS)	
	Writing 1 will reset the status.	
	0: None detected.	
	1: Detected.	
5-4	Reserved	
3	Reserved	
2	WDT's IRQ(WI)	
	0: None detected.	
	1: Detected.	
1	Serial Port 4's IRQ(SP4I)	
	0: None detected.	
	1: Detected.	
0	PBD's IRQ(PBDI)	
	0: None detected.	
	1: Detected.	

8.11.25 SMI# Pin Mapping Register (Index=F4h, Default=00h)

Bit	Description	
7	Reserved	
6	SMI Normal Access enable(SNAE)	
	1: enable (may directly access base_address + F0h ~ F3h)	
	0: disable	
5-0	SMI# Pin Location(SPL)	
	Please see note 4, location mapping table.	

8.11.26 Hardware Monitor Thermal Output Pin Mapping Register (Index=F5h, Default=00h)

Bit	Description
7-6	Reserved
5-0	Thermal Output Pin Location(TOPL)
	Please see note 4, location mapping table.

8.11.27 Hardware Monitor Alert Beep Pin Mapping Register (Index=F6h, Default=00h)

Bit	Description	
7-6	Reserved	
5-0	Alert Beep Pin Location(ABPL)	
	Please see note 4, location mapping table.	

8.11.28 Keyboard Lock Pin Mapping Register (Index=F7h, Default=00h)

Bit	Description
7-6	Reserved
5-0	Keyboard Lock Pin Location(KLPL)
	Please see note 4, location mapping table.

8.11.29 GP LED Blinking 1 Pin Mapping Register (Index=F8h, Default=00h)

Bit	Description	
7-6	Reserved	
5-0	GP LED Blinking 1 Location(GLB1L)	
	Please see note 4, location mapping table.	

8.11.30 GP LED Blinking 1 Control Register (Index=F9h, Default=00h)

Bit	Description		
7-4	Reserved		
3	3 GP LED Blinking 1 short low pulse enable(GLB1SLPE)		
	0: Disable		
	1: enable		
2-1	GP LED 1 Frequency Control(GL1FC)		
	00: 4 Hz		
	01: 1 Hz		
	10: 1/4 Hz		
	11: 1/8 Hz		
0	GP LED Blinking 1 Output low enable(GLB1OLE)		
	0: Disable		
	1: enable		

8.11.31 GP LED Blinking 2 Pin Mapping Register (Index=FAh, Default=00h)

Bit	Description	
7-6	Reserved	
5-0	GP LED Blinking 2 Location(GLB2L)	
	Please see note 4, location mapping table.	

8.11.32 GP LED Blinking 2 Control Register (Index=FBh, Default=00h)

	Bit	Description		
	7-4	Reserved		
Ī	3	GP LED Blinking 2 short low pulse enable(GLB2SLPE)		
		0: Disable		
		1: enable		
	2-1	GP LED 2 Frequency Control(GL2FC)		
		00: 4 Hz		
		01: 1 Hz		
		10: 1/4 Hz		
l		11: 1/8 Hz		

Bit	Description
0	GP LED Blinking 2 Output low enable(GLB2OLE)
	0: Disable
	1: Enable

8.12 Serial Port 3,4 Configuration Registers (LDN=08h,09h)

8.12.1 Serial Port 3,4 Activate (Index=30h, Default=00h)

Bit	Description	
7-1	Reserved	
0	Serial Port 3,4 Enable(SPE)	
	1: Enable	
	0: Disable	

8.12.2 Serial Port 3,4 Base Address MSB Register (Index=60h, Default=03h,02h)

Bit	Description		
7-4	Base Address[15:12](BA)		
	Read only as "0h" for Base Address[15:12]		
3-0	Base Address[11:8] (BA)		
	Read/write, mapped as Base Address[11:8]		

8.12.3 Serial Port 3,4 Base Address LSB Register (Index=61h, Default=00h)

Bit	Description	
7-3	Base Address[7:3] (BA)	
	Read/write, mapped as Base Address[7:3]	
2-0	Reserved	
	Read only as "000b"	

8.12.4 Serial Port 3,4 Interrupt Level Select (Index=70h, Default=04h, 03h)

Bit	Description
7-4	Reserved
	With default "0h"
3-0	Select interrupt level Note1 for Serial Port 3(SIL)

8.12.5 Serial Port 3,4 Special Configuration Register 1 (Index=F0h, Default=00h)

Bit	Description			
7	Reserved			
6-4	Serial Port 3,4 Mode(SPM) Note3			
	000: Standard (default)			
	001: IrDA 1.0 (HP SIR)			
	010 : ASKIR			
	100 : Smart Card Reader (SCR)			
	else : Reserved			
3	Reserved			
	With default "0"			
2-1	Clock Source(CS)			
	00: 24 MHz/13 (Standard)			
	01: 24 MHz/12			
	10: 24 MHz			
	11: 24 MHz/1.625			

Bit	Description
0	IRQ Type(IT) 1: IRQ sharing 0: Normal

8.12.6 Serial Port 3,4 Special Configuration Register 2 (Index=F1h, Default=50h)

This register is valid only when the mode of serial port 3, 4 is Smart Card Reader.

Bit	Description			
7	Transmission Delay Select(TDS) 1: There is no transmission delayed (40 bits) when SIR or ASKIR is switched from the RX mode to TX mode. 0: There is no transmission delayed (40 bits) when the SIR or ASKIR is switched from the RX mode to TX mode.			
6	Reception Delay Select(RDS) 1: There is no reception delayed (40 bits) when the SIR or ASKIR is switched from the TX mode to RX mode. 0: There is no reception delayed (40 bits) when the SIR or ASKIR is switched from the TX mode to RX mode.			
5	Single Mask Mode Enable(SMME) When this bit is set, RX of UART is masked under TX transmission. 1: mask enable 0: mask disable.			
4	Half Duplex Enable(HDE) 1: Half Duplex (default). 0: Full Duplex.			
3	SIR RX polarity(SRP) 1: Active low 0: Active high			
2-0	Reserved			

8.12.7 Serial Port 3,4 Special Configuration Register 3 (Index=F2h, Default=00h)

This register is valid only when the mode of serial port 3, 4 is Smart Card Reader.

Bit	Description			
7-3	Reserved			
2	SCRPFET# polarity(SP)			
	1: Active high			
	0: Active low			
1-0	SCR_CLKSEL1-0(SCS)			
	00: Stop			
	01: 3.5 MHz			
	10: 7.1 MHz			
	11: Special Divisor (96 MHz/DIV96M)			

8.12.8 Serial Port 3,4 Special Configuration Register 4 (Index=F3h, Default=7Fh)

This register is valid only when the mode of serial port 3, 4 is Smart Card Reader.

Bit	Description
7	SCRPSNT# Active Phase Control(SAPC)
	1: Active high
	0: Active low
6-0	SCR DIV96M6-0(SD)

Note 1:

Interrupt level mapping

Fh-Dh: not valid Ch: IRQ12 3h: IRQ3 2h: not valid 1h: IRQ1

0h: no interrupt selected

Note 2:

DMA channel mapping

7h-5h: not valid

4h: no DMA channel selected

3h: DMA3 2h: DMA2 1h: DMA1 0h: DMA0 **Note 3:**

Except the standard mode, COM3 and COM4 cannot be selected in the same mode.

Note 4: The Location mapping table

Location	Description
001 000	GP10 (pin 84). Powered by VCCH.
001 001	GP11 (pin 34).
001 010	GP12 (pin 33).
001 011	GP13 (pin 32).
001 100	GP14 (pin 31).
001 110	GP16 (pin 29).
010 000	GP20 (pin 27).
010 001	GP21 (pin 26).
010 010	GP22 (pin 25).
010 011	GP23 (pin 24).
010 100	GP24 (pin 23).
010 101	GP25 (pin 22).
010 110	GP26 (pin 21).
010 111	GP27 (pin 20).
011 000	GP30 (pin 19).
011 001	GP31 (pin 18).
011 010	GP32 (pin 17).
011 011	GP33 (pin 16).
011 100	GP34 (pin 14).
011 101	GP35 (pin 13).
011 110	GP36 (pin 12).

Location	Description
011 111	GP37 (pin 11).
100 000	GP40 (pin 79). Powered by VCCH.
100 001	GP41 (pin 78). Powered by VCCH.
100 010	GP42 (pin 76). Powered by VCCH.
100 011	GP43 (pin 75). Powered by VCCH.
100 100	GP44 (pin 72). Powered by VCCH.
100 110	GP46 (pin 70). Powered by VCCH.
100 111	GP47 (pin 66).
101 000	GP50 (pin 48).
101 001	GP51 (pin 10).
101 010	GP52 (pin 9).
101 011	GP53 (pin 77). Powered by VCCH.
101 100	GP54 (pin 73). Powered by VCCH.
101 101	GP55 (pin 85). Powered by VCCH.
101 110	GP56 (pin 83).
101 111	GP57 (pin 82).
110 000	GP60 (pin 81).
110 001	GP61 (pin 80)
110 010	GP62 (pin 76).
Else	Reserved

This page is intentionally left blank.

9. Functional Description

9.1 LPC Interface

The IT8781F supports the peripheral side of the LPC I/F as described in the LPC Interface Specification Rev.1.1. In addition to the required signals (LAD3-0, LFRAME#, LRESET#, LCLK (LCLK is the same as PCICLK.)), the IT8781F also supports LDRQ#, SERIRQ and PME#.

9.1.1 LPC Transactions

The IT8781F supports the necessary transfer cycle types described in the LPC I/F specification. Memory read and Memory write cycles are used for the Flash I/F. I/O read and I/O write cycles are used for the programmed I/O cycles. DMA read and DMA write cycles are used for DMA cycles. All of these cycles are characteristic of the single byte transfer.

For LPC host I/O read or write transactions, the Super I/O module processes a positive decoding, and the LPC interface can respond to the result of the current transaction by sending out SYNC values on LAD[3:0] signals or leave LAD[3:0] tri-state depending on its result.

For DMA read or write transactions, the LPC interface will react according to the DMA requests from the DMA devices in the Super I/O modules, and decide whether to ignore the current transaction or not.

The FDC and ECP are 8-bit DMA devices, so if the LPC Host initializes a DMA transaction with data size of 16/32 bits, the LPC interface will process the first 8-bit data and respond with an SYNC ready (0000b) which will terminate the DMA burst. The LPC interface will then re-issue another LDRQ# message to assert DREQn after finishing the current DMA transaction.

9.1.2 LDRQ# Encoding

The Super I/O module provides two DMA devices: the FDC and the ECP. The LPC Interface provides LDRQ# encoding to reflect the DREQ[3:0] status. Two LDRQ# messages or different DMA channels may be issued back-to-back to trace DMA requests quickly. But, four PCI clocks will be inserted between two LDRQ# messages of the same DMA channel to guarantee that there are at least 10 PCI clocks for one DMA request to change its status. (The LPC host will decode these LDRQ# messages, and send those decoded DREQn to the legacy DMA controller which runs at 4 MHz or 33/8 MHz).

9.2 Serialized IRQ

The IT8781F follows the specification of Serialized IRQ Support for PCI System, Rev. 6.0, September 1, 1995, to support the serialized IRQ feature, and is able to interface most PC chipsets. The IT8781F encodes the parallel interrupts to an SERIRQ which will be decoded by the chipset with built-in Interrupt Controllers (two 8259 compatible modules).

9.2.1 Continuous Mode

When in the Continuous mode, the SIRQ host initiates the Start frame of each SERIRQ sequence after sending out the Stop frame by itself. (The next Start frame may or may not begin immediately after the turnaround state of the current Stop frame.) The SERIRQ is always activated and SIRQ host keeps polling all the IRQn and system events, even though no IRQn status is changed. The SERIRQ enters the Continuous mode following a system reset.

9.2.2 Quiet Mode

In the Quiet mode, when the situation that one SIRQ Slave detects its input IRQn/events have been changed, it may initiate the first clock of Start frame. The SIRQ host can then follow to complete the SERIRQ sequence. In the Quiet mode, the SERIRQ has no activity following the Stop frame until it is initiated by SIRQ Slave,

www.ite.com.tw 71 IT8781F V0.2.2

which implies low activity = low mode power consumption.

9.2.3 **Waveform Samples of SERIRQ Sequence**

Figure 9-1. Start Frame Timing

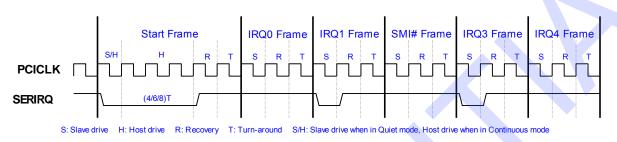
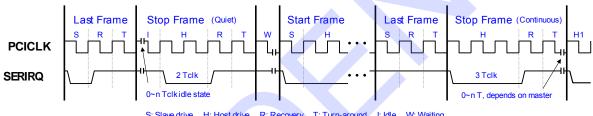
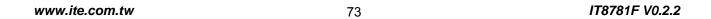



Figure 9-2. Stop Frame Timing



S: Slave drive H: Host drive R: Recovery T: Turn-around I: Idle W: Waiting

9.2.4 SERIRQ Sampling Slot

Slot Number	IRQn/ Event	#of Clocks Past Start	IT 8781F
1	IRQ0	2	-
2	IRQ1	5	Υ
3	SMI#	8	Y
4	IRQ3	11	Υ
5	IRQ4	14	Υ
6	IRQ5	17	Y
7	IRQ6	20	Y
8	IRQ7	23	Y
9	IRQ8	26	Υ
10	IRQ9	29	Y
11	IRQ10	32	Y
12	IRQ11	35	Υ
13	IRQ12	38	Υ
14	IRQ13	41	-
15	IRQ14	44	Y
16	IRQ15	47	Υ
17	IOCHCK#	50	-
18	INTA#	53	-
19	INTB#	56	-
20	INTC#	59	-
21	INTD#	62	-
32:22	32:22 Unassigned		-

9.3 General Purpose I/O

The IT8781F provides five sets of flexible I/O control and special functions for the system designers via a set of multi-functional General Purpose I/O pins (GPIO). The GPIO functions will not be performed unless the related enable bits of the GPIO Multi-function Pin Selection registers (Index 25h, 26h, 27h, 28h and 29h of the Global Configuration Registers) are set. The GPIO functions include the simple I/O function and alternate function, and the function selection is determined by the Simple I/O Enable Registers (LDN=07h, Index=C0h, C1h, C2h, C3h and C4h).

The Simple I/O function includes a set of registers, which correspond to the GPIO pins. All control bits are divided into five registers. The accessed I/O ports are programmable and are five consecutive I/O ports (Base Address+0, Base Address+1, Base Address+2, Base Address+3, Base Address+4). Base Address is programmed on the registers of GPIO Simple I/O Base Address LSB and MSB registers (LDN=07h, Index=60h and 61h).

The Alternate Function provides several special functions for users, including Watch Dog Timer, SMI# output routing, External Interrupt routing, Panel Button De-bounce, Keyboard Lock input routing, LED Blinking, Thermal output routing, and Beep output routing. The last two are the sub-functions of the Hardware Monitor.

The Panel Button De-bounce is an input function. After the panel button de-bounce is enabled, a related status bit will be set when an active low pulse is detected on the GPIO pin. The status bits will be cleared by writing 1's to them. Panel Button De-bounce Interrupt will be issued if any one of the status bit is set. However, the new setting status will not issue another interrupt unless the previous status bit is cleared before being set.

The Key Lock function locks the keyboard to inhibit the keyboard interface. The programming method is to set bit 2 on the register Index F0h of KBC (keyboard) (LDN=5). The pin location mapping, Index F7h must also be programmed correctly.

The Blinking function provides a low frequency blink output. By connecting to some external components, it can be used to control a power LED. There are several frequencies that can be selected.

The Watch Dog Timer (WDT) function is constituted by a time counter, a time-out status register, and the timer reset control logic. The time-out status bit may be mapped to an interrupt or KRST# through the WDT Configuration register. The WDT has a programmable time-out range from 1 to 65535 minutes or 1 to 65535 seconds. The units are also programmable, either a minute or a second, via bit7 of the WDT Configuration register. In real time, the clock divider provides 68.8msec per timer cycle to WDT operation when the time unit is selected as 64ms, provides 1.1 sec per timer cycle to WDT operation when the time unit is selected as 1 sec, and provides 1.1 minute per timer cycle to WDT operation when the time unit is selected as 1 minute. When the WDT Time-out Value register is set to a non-zero value, the WDT loads the value and begin counting down from the value. When the value reaches to 0, the WDT status register will be set. There are two system events including a Keyboard Interrupt and a Mouse Interrupt that can reload the non-zero value into the WDT. The effect on the WDT for each of the events may be enabled or disabled through bits in the WDT control register. No matter what the value is in the time counter, the host may force a time-out to occur by writing a "1" to the bit 1 of the WDT Configuration register.

The External Interrupt routing function provides a useful feature for motherboard designers. Through this function, the parallel interrupts of other on-board devices can be easily re-routed into the Serial IRQ.

The SMI# is a non-maskable interrupt dedicated to the transparent power management. It consists of different enabled interrupts generated from each of the functional blocks in the IT8781F. The interrupts are redirected as the SMI# output via the SMI# Control Register 1 and SMI# Control Register 2. The SMI# Status Registers 1 and 2 are used to read the status of the SMI input events. All the SMI# Status Register bits can be cleared when the corresponding source events become invalidated. These bits can also be cleared by writing 1 to bit 7 of SMI# Control Register 2, whether the events of the corresponding sources are invalidated or not. The SMI# events can be programmed as the pulse mode or level mode whenever an SMI# event occurs. The logic equation of the SMI# event is described below:

Functional Description

SMI# event = (EN_FIRQ and FIRQ) or (EN_S1IRQ and S1IRQ) or (EN_S2IRQ and S2IRQ) or (EN_PIRQ and PIRQ) or (EN_EC and EC_SMI) or (EN_PBDIRQ or PBDIRQ) or (EN_KIRQ and KIRQ) or (EN_MIRQ and MIRQ) or (EN_WDT and WDT_IRQ) or (EN_STPCLK and STPCLK_IRQ)

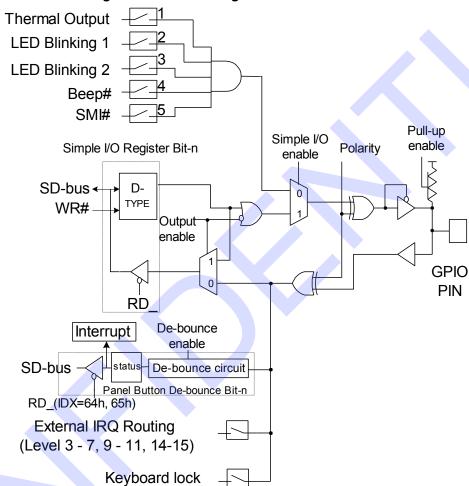


Figure 9-3. General Logic of GPIO Function

9.4 Advanced Power Supply Control and Power Management Event (PME#)

The circuit for advanced power supply control (APC) provides two power-up events, Keyboard and Mouse. When any of these two events is true, PWRON# will perform a low state until VCC is switched to the ON state. The two events include the followings:

- 1. Detection of KCLK edge or special pattern of KCLK and KDAT. The special pattern of KCLK means pressing pre-set key string sequentially, and KDAT means pressing pre-set keys simultaneously.
- 2. Detection of MCLK edge or special pattern of MCLK and MDAT. The special pattern of MCLK and MDAT means clicking on any mouse button twice sequentially.

The PANSWH# and PSON# are especially designed for the system. PANSWH# serves as a main power switch input, which is wire-AND to the APC output PWRON#. PSON# is the ATX Power control output, which is a power-failure gating circuit. The power-failure gating circuit is responsible for gating the PSIN input until PANSWH# becomes active when the VCCH is switched from OFF to ON.

The power-failure gating circuit can be disabled by setting the APC/PME Control Register 2 (LDN=04h, index F4h, bit 5). The gating circuit also provides an auto-restore function. When the bit 5 of PCR1 is set, the previous PSON# state will be restored when the VCCH is switched from OFF to ON.

The Mask PWRON# Activation bit (bit 4 of PCR 1) is used to mask all Power-up events except Switch on event when the VCCH state is just switched from FAIL to OFF. In other words, when this bit is set and the power state is switched from FAIL to OFF, the only validated function is PANSWH#.

The PCR2 register is responsible for determining the Keyboard power up events and APC conditions. Bit 4 is used to mask the PANSWH# power-on event on the PWRON# pin. To enable this bit, the keyboard power-up event should be enabled and set by (1) pressing pre-set key string sequentially or (2) stroking pre-set keys simultaneously. The APC/PME# special code index and data registers are used to specify the special key codes in the special power-up events of (1) pressing pre-set key string sequentially or (2) stroking pre-set keys simultaneously.

All APC registers (Index=F0h, F2h, F4h, F5h and F6h) are powered by back-up power (VBAT) when VCCH is OFF.

PME# is used to wake up the system from low-power states (S1-S5). Except the five events of the APC's, there will be other events to generate PME#: They are RI1# and RI2# events. RI1# and RI2# are Ring Indicator of Modem status at ACPI S1 or S2 state. A falling edge on these pins issues PME# events if the enable bits are set.

9.5 SPI Serial Flash Controller

9.5.1 Overview

The SPI Serial Flash Controller is a LPC to the serial Flash I/F controller.

9.5.2 Features

- SPI Interface
- LPC memory cycle and firmware memory cycle supported

9.5.3 Register Description

Table 9-1. Memory Stick Register List

Address	R/W	Default	Name
Base + 0h	R/W	20h	Control Register (SPI_CTRL)
Base + 1h	R/W	00h	Command Register (SPI_CMD)
Base + 2h	R/W	00h	Address 0 Register (SPI_ADDR0)
Base + 3h	R/W	00h	Address 1 Register (SPI_ADDR1)
Base + 4h	R/W	00h	Address 2 Register (SPI_ADDR2)
Base + 5h	R		Input Data 0 Register (SPI_IDATA0)
Base + 6h	R		Input Data 1 Register (SPI_IDATA1)
Base + 7h	R/W-R	00h/	Output Data Register (SPI_ODATA)/ Input Data 2 Register (SPI_IDATA2)

9.5.3.1 Control Register (SPI_CTRL)

Address: Base address + 0h

Bit	R/W	Default	Description
7	R	-	SPI Status(SPIS)
			This bit reports the SPI I/F status.
			0: SPI I/F is idle.
			1: SPI I/F is busy.
6	R/W	0b	Start IO Transfer(SIOT)
			This bit starts the SPI cycle with the instruction/parameter given through I/O
			port.
			0: No Start IO
			1: Enable Start IO/going
5	R/W	1b	Multiple Byte mode(MBM)
			This bit enables the Multiple Byte mode in LPC memory write/read cycle.
			0: Disable
			1: Enable
4	R/W	0b	SCK Selection(SCKS)
			This bit selects the SCK frequency.
			0: 33MHz/2.
			1: 33MHz.

Bit	R/W	Default	Description
3-2	R/W	00b	Input Data Byte(IDB)
			These bits determine the input data byte number in the Start IO mode.
			00: None.
			01: 1 byte. (SPI_DATAI0)
			10: 2 bytes. (SPI_DATAI0, SPI_DATAI1).
			11: 3 bytes. (SPI_DATAI0, SPI_DATAI1, SPI_DATAI2).
1-0	R/W	00b	Output Data Byte(ODB)
			These bits determine the output data byte number (including Instruction,
			Address, Data) in the Start IO mode.
			00: 1 byte. (SPI_CMD)
			01: 2 bytes. (SPI_CMD, SPI_DATAO)
			10: 4 bytes. (SPI_CMD, ADDR2, ADDR1, ADDR0)
			11: 5 bytes. (SPI_CMD, ADDR2, ADDR1, ADDR0, SPI_DATAO)

9.5.3.2 Command Register (SPI_CMD)

Address: Base address + 1h

Bit	R/W	Default	Description
7-0	R/W	00h	Command Register (SPI_CMD [7:0]) This register will set the Instruction command code in the Start IO mode. (The first byte)

9.5.3.3 Address 0 Register (SPI_ADDR0)

Address: Base address + 2h

Bit	R/W	Default	Description
7 – 0	R/W	00h	Address 0 Register (SPI_ADDR0 [7:0])
			This register will set the Address [7:0] in the Start IO mode.

9.5.3.4 Address 1 Register (SPI_ADDR1)

Address: Base address + 3h

Bit	R/W	Default	Description
7 – 0	R/W	00h	Address 1 Register (SPI_ADDR1 [7:0])
			This register will set the Address [15:8] in the Start IO mode.

9.5.3.5 Address 2 Register (SPI_ADDR2)

Address: Base address + 4h

	Bit	R/W	Default	Description
I	7 – 0	R/W	00h	Address 2 Register (SPI_ADDR2 [7:0])
L				This register will set the Address [23:16] in the Start IO mode.

9.5.3.6 Input Data 0 Register (SPI_IDATA0)

Address: Base address + 5h

Bit	R/W	Default	Description	
7-0	R		Input Data 0 Register (SPI_IDATA0 [7:0])	
			This register will set the Input Data 0 byte in the Start IO mode.	

9.5.3.7 Input Data 1 Register (SPI IDATA1)

Address: Base address + 6h

Bit	R/W	Default	Description
7-0	R		Input Data 1 Register (SPI_IDATA1 [7:0])
			This register will set the Input Data 1 byte in the Start IO mode.

9.5.3.8 Output Data/Input Data 2 Register (SPI_ODATA/ SPI_IDATA2)

Address: Base address + 7h

Bit	R/W	Default	Description
7-0	R/W	00h	Output Data Register (SPI_ODATA [7:0])/ Input Data 2 Register (SPI_IDATA2 [7:0]) This register will set the Output Data byte in the Start IO mode, or Input Data 2 when the input data byte number is 3.

9.5.4 Function Descriptions

Programming sequence: All the instruction code and byte numbers should refer to the Serial Flash product specification.

Start IO mode:

```
// 1: Check SPI I/F
IOR [SPI_CTRL]; // check bit7 SPI status
```

// 2: Set the parameters in any order of write sequence.

```
IOW [SPI_CMD] XXh: // Set SPI Instruction
IOW [SPI_ADDR0] XXh: // Set SPI Address0, if necessary
IOW [SPI_ADDR1] XXh: // Set SPI Address1, if necessary
IOW [SPI_ADDR2] XXh: // Set SPI Address2, if necessary
IOW [SPI_ODATA] XXh: // Set SPI Output Data, if necessary
```

// 3: Start SPI I/F

IOW [SPI_CTRL] {4'h1, Input_data_byte, Output_data_byte};

LPC memory cycle:

When the host issues a LPC memory read cycle with the matching memory space, the controller will issue a corresponding SPI read cycle automatically. The controller will pre-read from 0 to 3 byte(s) of data into the read buffers. The number of pre-read data byte(s) is determined by the starting address 0 and 1. The number of bytes will be 3 bytes if the two addresses are 00b. The number will be 2 bytes if the two addresses are 10b. There is no pre-read data if the two addresses are 11b. If the address of the next coming LPC memory cycle matches the buffers'

www.ite.com.tw 79 IT8781F V0.2.2

address, no SPI read cycle will be issued.

For most types of serial flash products, the Write-Enable instruction through the Start IO mode should be given before issuing the LPC memory writes cycle. Normally, each LPC memory cycle will issue a one byte SPI programming cycle (Instruction, Addresses, 1 Data byte). If the Multiple Byte mode is enabled, a multi-byte SPI programming cycle will be issued. For example:

```
// LPC Memory Write Multiple byte mode
// 1: Write-Enable command
 IOR [SPI CTRL];
                                         // check bit7 SPI status
 IOW [SPI CMD]
                          06h:
                                    // Set SPI Instruction
 IOW [SPI_CTRL]
                          {4'h3, 2'b00, 2'b00};
                               // Start IO SPI cycle and enable the LPC memory Multiple Byte mode
      LPC memory write cycles: The first LPC memory cycle will start an SPI cycle and determine the
      Programming page address. The following LPC memory write cycles must be contiguous
addresses.
// And, the total bytes cannot exceed 256 – [starting address 7-0]. These conditions should be
// confirmed by the programmer. The controller will not check them. During this period, the SPI cycle
// will not be finished. Between the two MEMW cycles, the HOLD# pin will be asserted and SCK will be
forced low.
 MEMW
           [Starting address]:
                                    // Set SPI Address and the first byte data.
 MEMW
                                    // Set SPI second byte data.
           [Starting address+1]:
 MEMW
           [Starting address+2]:
                                    // Set SPI third byte data.
 MEMW
           [Starting address+N]:
                                    // Set SPI Nth byte data.
// 3: Terminate SPI I/F
 IOW [SPI CTRL]
                          {4'h0, 2'b00, 2'b00};
                               // Terminate LPC memory write Page Program mode and SPI cycle
// LPC Memory Read Multiple byte mode
// 1: Write-Enable command
 IOW [SPI CTRL]
                          {4'h2, 2'b00, 2'b00};
                               // Enable LPC memory Multiple Byte mode
      LPC memory read cycles: The first LPC memory cycle will start the SPI cycle and determine the
      reading address. The following LPC memory read cycles must be the contiguous addresses.
// And, the total bytes will not be limited. The programmer should confirm these conditions.
// The controller will not check them. During this period, the SPI cycle will not be finished. Between the two
// MEMR cycles, the HOLD# pin will be asserted and SCK will be forced low.
                                    // Set SPI Address and the first byte data.
 MEMR
           [Starting address]:
           [Starting address+1]:
 MEMR
                                    // Set SPI second byte data.
 MEMR
           [Starting address+2]:
                                    // Set SPI third byte data.
 MEMR
           [Starting address+N]:
                                    // Set SPI Nth byte data.
// 3: Terminate SPI I/F
 IOW [SPI CTRL]
                          {4'h0, 2'b00, 2'b00};
                               // Terminate LPC memory Read Multiple Byte mode and SPI cycle
```


9.6 Environment Controller

The Environment Controller (EC), built in the IT8781F, includes eight voltage inputs, three temperature sensor inputs, five FAN Tachometer inputs, and three sets of advanced FAN Controllers. The EC monitors the hardware environment and implements the environmental control for personal computers.

The IT8781F contains an 8-bit ADC (Analog-to-Digital Converter), which is responsible for monitoring the voltages and temperatures. The ADC converts the analog inputs ranging from 0V to 4.096V into 8-bit digital bytes. With additional external components, the analog inputs can be made to monitor different voltage ranges, in addition to monitoring the fixed input range of 0V to 4.096V. Through the external thermistors or thermal diodes, the temperature sensor inputs can be converted into 8-bit digital bytes, enabling the sensor inputs to monitoring the temperature of various components. A built-in ROM is also provided to adjust the non-linear characteristics of thermistors.

FAN Tachometer inputs are digital inputs with an acceptable input range of 0V to 5V, and are responsible for measuring the FAN's Tachometer pulse periods.

The EC of the IT8781F provides multiple internal registers and an interrupt generator for programmers to monitor the environment and control the FANs. Both the LPC Bus and Serial Bus interfaces are supported to accommodate the needs for various applications.

9.6.1 Interfaces

LPC Bus: The Environment Controller of the IT8781F decodes two addresses.

Register or Port Address

Address register of the EC Base+05h

Data register of the EC Base+06h

Table 9-2. Address Map on the LPC Bus

Note 1: The Base Address is determined by the Logical Device configuration registers of the Environment Controller (LDN=04h, registers index=60h, 61h).

To access an EC register, the address of the register is written to the address port (Base+05h). Read or write data from or to that register via data port (Base+06h).

9.6.2 Registers

Table 9-3 lists all EC (Environment Controller) registers. Some of them such as index 10h~12h, etc. have no default values and these settings have impact on VIN, TEMP, and FAN's detection. Therefore, the mistaken action might happen during the detecting process. In order to prevent these unexpected behaviors happening, it is recommended that the related interrupts or SMI mask registers (04h~09h) be enabled for the unused hardware monitor.

9.6.2.1 Address Port (Base+05h, Default=00h)

Bit	Description
7	Outstanding; read only
	This bit is set when a data write is performed to Address Port via the LPC Bus.
6-0	Index Internal Address of RAM and Registers.

Table 9-3. Environment Controller Registers

Index	R/W	Default	Registers or Action	
00h	R/W	18h	Configuration	
01h	R	00h	Interrupt Status 1	
02h	R	00h	Interrupt Status 2	
03h	R	00h	Interrupt Status 3	
04h	R/W	00h	SMI# Mask 1	
05h	R/W	00h	SMI# Mask 2	
06h	R/W	00h	SMI# Mask 3	
07h	R/W	00h	Interrupt Mask 1	
08h	R/W	00h	Interrupt Mask 2	
09h	R/W	80h	Interrupt Mask 3	
0Ah	R/W	54h	Interface Selection Register	
0Bh	R/W	09h	Fan PWM Smoothing Step Frequency Selection Register	
0Ch	R/W	00h	Fan Tachometer 16-bit Counter Enable Register	
0Dh	R	-	Fan Tachometer 1 Reading Register	
0Eh	R	-	Fan Tachometer 2 Reading Register	
0Fh	R	-	Fan Tachometer 3 Reading Register	
10h	R/W	-	Fan Tachometer 1 Limit Register	
11h	R/W	-	Fan Tachometer 2 Limit Register	
12h	R/W	-	Fan Tachometer 3 Limit Register	
13h	R/W	07h	Fan Controller Main Control Register	
14h	R/W	50h	FAN_CTL Control Register	
15h	R/W	00h/20h40h/60h	FAN_CTL1 PWM Control Register	
1311	FX/ V V	0011/20114011/0011	Bit7 must be 0.	
16h	R/W	R/W 00h	00h/20h/40h/60h	FAN_CTL2 PWM Control Register
1011	IVVV	0011/2011/4011/0011	Bit7 must be 0.	
17h	R/W	00h/20h/40h/60h	FAN_CTL3 PWM Control Register	
1711	1011	001//201//401//0011	Bit7 must be 0.	
18h	R	-	Fan Tachometer 1 Extended Reading Register	
19h	R	-	Fan Tachometer 2 Extended Reading Register	
1Ah	R	-	Fan Tachometer 3 Extended Reading Register	
1Bh	R/W	-	Fan Tachometer 1 Extended Limit Register	
1Ch	R/W	-	Fan Tachometer 2 Extended Limit Register	
1Dh	R/W	-	Fan Tachometer 3 Extended Limit Register	
20h	R	-	VIN0 Voltage Reading Register	
21h	R	-	VIN1 Voltage Reading Register	
22h	R	-	VIN2 Voltage Reading Register	

Functional Description

Index	R/W	Default	Registers or Action
23h	R	-	VIN3 Voltage Reading Register
24h	R	-	VIN4 Voltage Reading Register
25h	R	-	VIN5 Voltage Reading Register
26h	R	-	VIN6 Voltage Reading Register
27h	R	-	VIN7 Voltage Reading Register
28h	R	-	VBAT Voltage Reading Register
29h	R	-	TMPIN1 Temperature Reading Register
2Ah	R	-	TMPIN2 Temperature Reading Register
2Bh	R	-	TMPIN3 Temperature Reading Register
30h	R/W	-	VIN0 High Limit Register
31h	R/W	-	VIN0 Low Limit Register
32h	R/W	-	VIN1 High Limit Register
33h	R/W	ı	VIN1 Low Limit Register
34h	R/W	-	VIN2 High Limit Register
35h	R/W	ı	VIN2 Low Limit Register
36h	R/W	1	VIN3 High Limit Register
37h	R/W	-	VIN3 Low Limit Register
38h	R/W	1	VIN4 High Limit Register
39h	R/W	ı	VIN4 Low Limit Register
3Ah	R/W	-	VIN5 High Limit Register
3Bh	R/W	-	VIN5 Low Limit Register
3Ch	R/W	_	VIN6 High Limit Register
3Dh	R/W	1	VIN6 Low Limit Register
3Eh	R/W	-	VIN7 High Limit Register
3Fh	R/W	-	VIN7 Low Limit Register
40h	R/W		TMPIN1 High Limit Register
41h	R/W	-	TMPIN1 Low Limit Register
42h	R/W	-	TMPIN2 High Limit Register
43 h	R/W	-	TMPIN2 Low Limit Register
44h	R/W	-	TMPIN3 High Limit Register
45h	R/W	-	TMPIN3 Low Limit Register
50h	R/W	00h	ADC Voltage Channel Enable Register
51h	R/W	00h	ADC Temperature Channel Enable Register
52h	R/W	7Fh	TMPIN1 Thermal Output Limit Register
53h	R/W	7Fh	TMPIN2 Thermal Output Limit Register
54h	R/W	7Fh	TMPIN3 Thermal Output Limit Register
55h	R/W	00h	ADC Temperature Extra Channel Enable Register

Index	R/W	Default	Registers or Action
56h	R/W	00h	Thermal Diode 1 Zero Degree Adjust Register
57h	R/W	00h	Thermal Diode 2 Zero Degree Adjust Register
58h	R	90h	ITE Vendor ID Register
59h	R/W	00h	Thermal Diode 3 Zero Degree Adjust Register
5Bh	R	12h	Core ID Register
5Ch	R/W	60h	Beep Event Enable Register
5Dh	R/W	00h	Beep Frequency Divisor of Fan Event Register
5Eh	R/W	00h	Beep Frequency Divisor of Voltage Event Register
5Fh	R/W	00h	Beep Frequency Divisor of Temperature Event Register
60h	R/W	7Fh	FAN_CTL1 SmartGuardian Automatic Mode Temperature Limit of OFF Register
61h	R/W	7Fh	FAN_CTL1 SmartGuardian Automatic Mode Temperature Limit of Fan Start Register
63h	R/W	00h	FAN_CTL1 SmartGuardian Automatic Mode Start PWM Register
64h	R/W	00h	FAN_CTL1 SmartGuardian Automatic Mode Control Register
68h	R/W	7Fh	FAN_CTL2 SmartGuardian Automatic Mode Temperature Limit of OFF Register
69h	R/W	7Fh	FAN_CTL2 SmartGuardian Automatic Mode Temperature Limit of Fan Start Register
6Bh	R/W	00h	FAN_CTL2 SmartGuardian Automatic Mode Start PWM Register
6Ch	R/W	00h	FAN_CTL2 SmartGuardian Automatic Mode Control Register
70h	R/W	7Fh	FAN_CTL3 SmartGuardian Automatic Mode Temperature Limit of OFF Register
71h	R/W	7Fh	FAN_CTL3 SmartGuardian Automatic Mode Temperature Limit of Fan Start Register
73h	R/W	00h	FAN_CTL3 SmartGuardian Automatic Mode Start PWM Register
74h	R/W	00h	FAN_CTL3 SmartGuardian Automatic Mode Control Register
88h	R/W	-0h	External Temperature Sensor Host Status Register
89h	R/W	00h	External Temperature Sensor Host Target Address Register
8Ah	R/W	00h	External Temperature Sensor Host Write Length Register
8Bh	R/W	00h	External Temperature Sensor Host Read Length Register
8Ch	R/W	00h	External Temperature Sensor Host Command (Write Data 1) Register
8Dh	R/W	00h	External Temperature Sensor Write Data (2-8) Register
8Eh	R/W	02h	External Temperature Sensor Host Control Register
8Fh	R	00h	External Temperature Sensor Read Data (1-16) Register

9.6.2.2 Register Description

9.6.2.2.1 Configuration Register (Index=00h, Default=18h)

Functional Description

Bit	R/W	Description
7	R/W	Initialization(INIT)
		A "1" restores all registers to their individual default values, except the Serial Bus Address register. This bit clears itself when the default value is "0".
6	R/W	Update VBAT Voltage Reading(UVVR)
5	R/W	COPEN# cleared(CCW) Write "1" to clear COPEN# Note: The Case Open Status register (Index 01h <bit4>) will be cleared when first writing this register and then reading Index 01h<bit4>.</bit4></bit4>
4	R	Reserved Read only; always "1"
3	R/W	INT_Clear(INTC) A "1" disables the SMI# and IRQ outputs s while the contents of interrupt status bits remaining unchanged.
2	R/W	IRQ Enable (IRQE) It enables the IRQ Interrupt output.
1	R/W	SMI# Enable(SMIE) A "1" enables the SMI# Interrupt output.
0	R/W	Start(START) A "1" enables the startup of monitoring operations and a "0" sets the monitoring operation in the STANDBY mode.

9.6.2.2.2 Interrupt Status Register 1 (Index=01h, Default=00h)

Reading this register will clear itself following a read access.

Bit	R/W	Description
7	R	Reserved
6	R	Reserved
5	R	Reserved
4	R	Case Open Status(COS) A "1" indicates a Case Open event has occurred. Note: The Case Open Status register (Index 01h <bit4>) will be cleared when first writing Index 00h<bit5> and then reading this register.</bit5></bit4>
3	R	Reserved
2-0	R	Count limit Reach(CLR) A "1" indicates the FAN_TAC3-1 Count limit has been reached.

9.6.2.2.3 Interrupt Status Register 2 (Index=02h, Default=00h)

Reading this register will clear itself after the read operation is completed.

Bit	R/W	Description
7-0	R	VIN7-0 limit Reached(VLR)
		A "1" indicates a High or Low limit of VIN7-0 has been reached.

9.6.2.2.4 Interrupt Status Register 3 (Index=03h, Default=00h)

Reading this register will clear itself following a read access.

Bit	R/W	Description
7-3	R	Reserved
2-0	R	Temperature limit Reached (TLR) A "1" indicates a High or Low limit of Temperature 3-1 has been reached.

9.6.2.2.5 SMI# Mask Register 1 (Index=04h, Default=00h)

Bit	R/W	Description
7	R/W	Reserved
6	R/W	Reserved
5	R/W	Reserved
4	R/W	Case Open Interrupt SMI#(COISMI)
		A "1" disables the Case Open Intrusion interrupt status bit for SMI#.
3	R/W	Reserved
2-0	R/W	FAN_TAC3-1 Interrupt SMI#(FISMI)
		A "1" disables the FAN_TAC3-1 interrupt status bit for SMI#.

9.6.2.2.6 SMI# Mask Register 2 (Index=05h, Default=00h)

Bit	R/W	Description
7-0	R/W	VIN7-1 Interrupt SMI#(VISMI)
		A "1" disables the VIN7-0 interrupt status bit for SMI#.

9.6.2.2.7 SMI# Mask Register 3 (Index=06h, Default=00h)

Bit	R/W	Description
7-3	R/W	Reserved
2-0	R/W	Temperature3-1 Interrupt SMI#(TISMI)
		A "1" disables the Temperature 3-1 interrupt status bit for SMI#.

9.6.2.2.8 Interrupt Mask Register 1 (Index=07h, Default=00h)

Bit	R/W	Description
7	R/W	Reserved
6	R/W	Reserved
5	R/W	Reserved
4	R/W	Case Open Interrupt IRQ(COIIRQ) A "1" disables the Case Open Intrusion interrupt status bit for IRQ.
3	R/W	Reserved
2-0	R/W	FAN_TAC3-1 Interrupt IRQ(FIIRQ)
		A "1" disables the FAN_TAC3-1 interrupt status bit for IRQ.

9.6.2.2.9 Interrupt Mask Register 2 (Index=08h, Default=00h)

Bit	R/W	Description
7-0	R/W	VIN7-0 Interrupt IRQ(VIIRQ)
		A "1" disables the VIN7-0 interrupt status bit for IRQ.

9.6.2.2.10 Interrupt Mask Register 3 (Index=09h, Default=80h)

Bit	R/W	Description
7	R/W	Ext Thermal Interrupt(ETI)
		A "1" disables the External Thermal Sensor interrupt.
6-3	R/W	Reserved
2-0	R/W	Temperature3-1 Interrupt IRQ(TIIRQ)
		A "1" disables the Temperature 3-1 interrupt status bit for IRQ.

9.6.2.2.11 Interface Selection Register (Index=0Ah, Default=54h)

Bit	R/W	Description
7	R/W	Pseudo-EOC (End of conversion of ADC)(PEOC)
		A Pseudo-EOC bit can speed up the FAN speed setup time in the SmartGuardian
		automatic mode. (Write 1 to the bit then write 0.)
6-4	R/W	External Thermal Sensor Host Selection(ETSHS)
		000: Disable
		100: Reserved
		101: SST Slave Device
		110: PECI
		111: SST Host
		Others: Reserved
3	R/W	SST/PECI Host Controller Clock Selection(HCS)
		0: Internally generated 32 MHz
		1: 24 MHz

Functional Description

Bit	R/W	Description
2	R/W	SST/PECI Host Controller (Auto Speed No-change tolerance) tbit 1 setting(HCTB)
		0: (2 host clocks) no less than 1 host clock
		1: (1 host clock) less than 1 host clock
1	R/W	Reserved
		(must be 0)
1-0	R	SST/PECI Host Controller Transition speed mode Selection(HCTSMS)
		00: Auto
		01: Fixed at 1Mhz
		10: Fixed at 0.5Mhz
		11: Fixed at 0.25Mhz

9.6.2.2.12 Fan PWM Smoothing Step Frequency Selection Register (Index=0Bh, Default=09h)

Bit	R/W	Description
7-6	R/W	FAN PWM Smoothing Step Frequency Selection
		00: 16Hz
		01: 8Hz
		10: 4Hz
		11: 2Hz
5-0	_	Reserved
		Bit 5 and bit 4 must be 00b.

9.6.2.2.13 Fan Tachometer 16-bit Counter Enable Register (Index=0Ch, Default=00h)

Bit	R/W	Description
7	R/W	TMPIN3 Enhanced Interrupt Mode Enable(T3EIME)
		0: Original mode
		1: The interrupt will be generated when the TMPIN3 is higher than the high limit or lower
		than the low limit.
6	R/W	TMPIN2 Enhanced Interrupt Mode Enable(T2EIME)
		0: Original mode
		1: The interrupt will be generated when the TMPIN2 is higher than the high limit or lower
F. 4	D///	than the low limit.
5:4	R/W	Reserved
3	R/W	TMPIN1 Enhanced Interrupt Mode Enable(T1EIME)
		0: Original mode.
		1: The interrupt will be generated when the TMPIN1 is higher than the high limit or lower
		than the low limit.
2	R/W	FAN_TAC3, 16-bit Counter Divisor Enable(F3CDE)
		0: Disable
		1: Enable
1	R/W	FAN_TAC2 16-bit Counter Divisor Enable(F2CDE)
		0: Disable
		1: Enable
0	R/W	FAN_TAC1 16-bit Counter Divisor Enable(F1CDE)
		0: Disable
		1: Enable

9.6.2.2.14 Fan Tachometer 1-3 Reading Registers (Index=0Dh-0Fh)

Bit	R/W	Description
7-0	R	Tachometer Reading Value(TRV)
		The number of counts of the internal clock per revolution

9.6.2.2.15 Fan Tachometer 1-3 Limit Registers (Index=10h-12h)

Bit	R/W	Description
7-0	R/W	Limit Value(LV)

9.6.2.2.16 Fan Controller Main Control Register (Index=13h, Default=07h)

Bit	R/W	Description
7	R	Reserved
6-4	R/W	FAN_TAC3-1 Enable(FE)
		0: Disable
		1: Enable
3	R/W	Full Speed Control of FAN_CTL Automatic Mode(FSCFAM)
		0: The full speeds of FAN_CTL1-3 automatic mode are independent.
		1: All FAN_CTL1-3 will enter the full speed when the temperature exceeds the full
		Speed Temperature Limit.
2-0	R/W	FAN_CTL3-1 Output Mode Selection(FCOMS)
		0: ON/OFF mode.
		1: SmartGuardian mode

9.6.2.2.17 FAN_CTL Control Register (Index=14h, Default=50h)

Bit	R/W	Description
7	R/W	FAN_CTL Polarity (for all FANs)(FP)
		0: Active low
		1: Active high
6-4	R/W	PWM Base Clock Select (for FAN1, 3)(PBCS)
		000: 48Mhz (PWM Frequency=375Khz)
		001: 24Mhz(PWM Frequency=187.5Khz)
		010: 12Mhz(PWM Frequency=93.75Khz)
		011: 8Mhz(PWM Frequency=62.5Khz)
		100: 6Mhz(PWM Frequency=46.875Khz)
		101: 3Mhz(PWM Frequency=23.43Khz)
		110: 1.5Mhz(PWM Frequency=11.7Khz)
		111: 0.75Mhz(PWM Frequency=5.86Khz)
3	R/W	Reserved
		(Must be 0)
2-0	R/W	FAN_CTL3-1 ON/OFF Mode Control (FCOFMC)
		These bits are only available when the relative output modes are selected in the
		ON/OFF mode.
		0: OFF
		1: ON

9.6.2.2.18 FAN_CTL1 PWM Control Register (Index=15h, Default=00h/20h/40h/60h)

This default value of this register is selected by JP5 and JP7.

Bit	R/W	Description
7	R/W	FAN_CTL1 PWM Mode Automatic/Software Operation Selection (F1PASOS)
		0: Software operation
		1: Reserved
6-0	R/W	PWM Control Temperature Input Selection (PCTIS)
		128 steps of PWM control when in Software operation (bit 7=0)
		Bits[1:0]:
		00: TMPIN1
		01: TMPIN2
		10: TMPIN3
		11: Reserved

9.6.2.2.19 FAN_CTL2 PWM Control Register (Index=16h, Default=00h/20h/40h/60h)

This default value of this register is selected by JP5 and JP7.

Bit	R/W	Description	
7	R/W	FAN_CTL2 PWM mode Automatic/Software Operation Selection(F2PASOS)	
		0: Software Operation 1: Reserved(Automatic Operation)	
6-0	R/W	PWM Control Temperature Input Selection (PCTIS)	
		128 steps of PWM control when in Software operation (Bit 7 must be 0.)	

9.6.2.2.20 FAN_CTL3 PWM Control Register (Index=17h, Default=00h/20h/40h/60h)

This default value of this register is selected by JP5 and JP7.

Bit	R/W	Description
7	R/W	FAN_CTL3 PWM mode Automatic/Software Operation Selection(F3PASOS)
		0: Software Operation
		1: Reserved(Automatic Operation)
6-0	R/W	PWM Control Temperature Input Select(PCTIS)
		128 steps of PWM control when in Software operation (bit 7=0)
		Bit [1:0]:
		00: TMPIN1
		01: TMPIN2
		10: TMPIN3
		11: Reserved

9.6.2.2.21 Fan Tachometer 1-3 Extended Reading Registers (Index=18h-1Ah)

Bit	R/W	Description
7-0	R	Count Number of Internal Clock Per Revolution [15:8]

9.6.2.2.22 Fan Tachometer 1-3 Extended Limit Registers (Index=1Bh-1Dh)

Bit	R/W	Description
7-0	R/W	Limit Value [15:8]

www.ite.com.tw 91 IT8781F V0.2.2

9.6.2.2.23 VIN7-VIN0 Voltage Reading Registers (Index=27h-20h)

ĺ	Bit	R/W	Description
	7-0	R	Voltage Reading Values(VRV)

9.6.2.2.24 VBAT Voltage Reading Register (Index=28h)

Bit	R/W	Description	
7-0	R	VBAT Voltage Reading Value(VVRV)	

9.6.2.2.25 TMPIN3-1 Temperature Reading Registers (Index=2Bh-29h)

Bit	R/W	Description
7-0	R	Temperature Reading Value (TRV)

9.6.2.2.25.1 VIN7-0 High Limit Registers (Index=3Eh, 3Ch, 3Ah, 38h, 36h, 34h, 32h, 30h)

Bit	R/W	Description	
7-0	R/W	High Limit Value(HLV)	

9.6.2.2.26 VIN7-0 Low Limit Registers (Index=3Fh, 3Dh, 3Bh, 39h, 37h, 35h, 33h, 31h)

	Bit	R/W	Description
Ī	7-0	R/W	Low Limit Value(LLV)

9.6.2.2.27 TMPIN3-1 High Limit Registers (Index=44h, 42h, 40h)

Bit	R/W		Description
7-0	R/W	High Limit Value(HLV)	

9.6.2.2.28 TMPIN3-1 Low Limit Registers (Index=45h, 43h, 41h)

Bit	R/W	Description
7-0	R/W	Low Limit Value(LLV)

9.6.2.2.29 ADC Voltage Channel Enable Register (Index=50h, Default=00h)

Bit	R/W	Description	
7-0	R/W	ADC VIN7-VIN0 Scan Enable(ADCVSE)	
		0 : Disable	
		1: Enable	

9.6.2.2.30 ADC Temperature Channel Enable Register (Index=51h, Default=00h)

TMPIN3-1 cannot be enabled in both Thermal Resistor mode and Thermal Diode (Diode connected Transistor) mode.

Bit	R/W	Description
7-6	R/W	Reserved
5-3	R/W	TMPIN Enable Thermal Mode(TETM) TMPIN3-1 is enabled in the Thermal Resistor mode. 0 : Disable 1: Enable.
2-0	R/W	TMPIN Enable Diode Mode(TEDM) TMPIN3-1 is enabled in the Thermal Diode (or Diode-connected Transistor) mode. 0 : Disable 1: Enable

9.6.2.2.31 TMPIN3-1 Thermal Output Limit Registers (Index=54h-52h, Default=7Fh)

Bit	R/W	Description
7-0	R/W	Thermal Output Limit Value(TOLV)

9.6.2.2.32 ADC Temperature Extra Channel Enable Register (Index=55h, Default=00h)

Bit	R/W	Description
7	R/W	TEMPIN3 Temperature Reading Source Selection(TTRSS)
		0: TEMPIN3 thermal sensor
		1: External Temperature Sensor Host
6-4	R/W	FAN_CTRL2 PWM Base Clock Selection (FPWMCLKS)
		000: 48Mhz (PWM Frequency=375Khz)
		001: 24Mhz(PWM Frequency=187.5Khz)
		010: 12Mhz(PWM Frequency=93.75Khz)
		011: 8Mhz(PWM Frequency=62.5Khz)
		100: 6Mhz(PWM Frequency=46.875Khz)
		101: 3Mhz(PWM Frequency=23.43Khz)
		110: 1.5Mhz(PWM Frequency=11.7Khz)
		111: 0.75Mhz(PWM Frequency=5.86Khz)
3	R/W	Reserved
		(Must be 0)
2-0	R/W	VIN6-4 Thermal Resistor Mode(VTRM)
		VIN6-4 is enabled in the Thermal Resistor mode.
		0: Disable
		1: Enable

9.6.2.2.33 Thermal Diode Zero Degree Adjust 1 Register (Index=56h, Default=00h)

This register is read only unless bit 7 of 5Ch is set.

	Bit	R/W	Description
I	7-0	R/W	Thermal Diode 1 Zero Degree Voltage Value(T1DZDV)

9.6.2.2.34 Thermal Diode Zero Degree Adjust 2 Register (Index=57h, Default=00h)

This register is read only unless bit 7 of 5Ch is set.

Bit	R/W	Description
7-0	R/W	Thermal Diode 2 Zero Degree Voltage Value(T2DZDV)

www.ite.com.tw 93 IT8781F V0.2.2

9.6.2.2.35 Vendor ID Register (Index=58h, Default=90h)

Bit	R/W	Description
7-0	R	ITE Vendor ID; read only (IVID)

9.6.2.2.36 Thermal Diode Zero Degree Adjust 3 Register (Index=59h, Default=00h)

This register is **read only** unless bit 7 of 5Ch is set.

Bit	R/W	Description
7-0	R/W	Thermal Diode 3 Zero Degree Voltage Value(T3DZDV)
		Bit 7:0

9.6.2.2.37 Code ID Register (Index=5Bh, Default=12h)

Bit	R/W		Description	
7-0	R	ITE Vendor ID; read only (IVID)		

9.6.2.2.38 Beep Event Enable Register (Index=5Ch, Default=60h)

Bit	R/W	Description	
7	R/W	Thermal Diode Zero Degree Adjust Register Write Enable(TDZDARWA) Thermal Diode Zero Degree Adjust register write enabled 0: disable 1: enable	
6-4	R/W	ADC Clock Selection (ADCS). 000: 500Khz 001: 250Khz 010: 125K 011: 62.5Khz 100: 31.25Khz 101: 24Mhz 110: 1Mhz(Default) 111: 2Mhz	
3	R/W	Reserved	
2	R/W	Beep Enable TMPIN Exceed(BETE) This bit can enable the beep action when TMPINs exceed the limit. 0: disable 1: enable	
1	R/W	Beep Enable VIN Exceed(BEVE) This bit can enable the beep action when VINs exceed the limit. 0: disable 1: enable	
0	R/W	Beep Enable FAN_TAC Exceed(BEFE) This bit can enable the beep action when FAN_TACs exceed the limit. 0: disable 1: enable	

9.6.2.2.39 Beep Frequency Divisor of Fan Event Register (Index=5Dh, Default=00h)

Dit	D/M	Description
Bit	FK/VV	Description

7-4	R/W	Tone Divisor(TD)
		Tone=500/(bits[7:4]+1)
3-0	R/W	Frequency Divisor(FD)
		Frequency=10K/(bits[3:0]+1)

9.6.2.2.40 Beep Frequency Divisor of Voltage Event Register (Index=5Eh, Default=00h)

Bit	R/W	Description	
7-4	R/W	Tone Divisor(TD)	
		Tone=500/(bits[7:4]+1)	
3-0	R/W	Frequency Divisor(FD)	
		Frequency=10K/(bits[3:0]+1)	

9.6.2.2.41 Beep Frequency Divisor of Temperature Event Register (Index=5Fh, Default=00h)

Bit	R/W	Description
7-4	R/W	Tone Divisor(TD)
		Tone=500/(bits[7:4]+1)
3-0	R/W	Frequency Divisor(FD)
		Frequency=10K/(bits[3:0]+1)

9.6.2.2.42 FAN_CTL3-1 SmartGuardian Automatic Mode Temperature Limit of OFF Registers (Index=70h, 68h, 60h, Default=7Fh)

Bit	R/W	Description
7-0	R/W	Temperature Limit Value of Fan OFF

9.6.2.2.43 FAN_CTL3-1 SmartGuardian Automatic Mode Temperature Limit of Fan Start Registers (Index=71h, 69h, 61h, Default=7Fh)

	Bit	R/W	Description
ſ	7-0	R/W	Temperature Limit Value of Fan Start

9.6.2.2.44 FAN_CTL3-1 SmartGuardian Automatic Mode Start PWM Registers (Index=73h, 6Bh, 63h, Default=00h)

Bit	R/W	Description
7	R/W	Slope PWM bit[6]
		Please refer to the description of SmartGuardian Automatic Mode Control Register.
6-0	R/W	Start PWM Value

9.6.2.2.45 FAN_CTL3-1 SmartGuardian Automatic Mode Control Registers (Index=74h, 6Ch, 64h, Default=00h)

	Bit	R/W	Description
	7	R/W	FAN Smoothing This bit enables the FAN PWM smoothing changing. 0: Disable 1: Enable
f	6	R/W	Reserved

www.ite.com.tw 95 IT8781F V0.2.2

_			
	5-0	R/W	Clara DWM hitfs:01
	3-0	FX/ V V	Slope PWM bit[5:0]
			OL (OL DIAMALITE OL DIAMALITE OL (O) DIAMA
			Slope = (Slope PWM bit[6:3] + Slope PWM bit[2:0] / 8) PWM value/°C

9.6.2.2.46 External Temperature Sensor Host Status Register (Index=88h, Default=---00000b)

Bit	R/W	Description
7	R/W	Data FIFO Pointer Clear(DFP) Writing a 1 clears the Read/Write Data FIFO pointers. 0: No action. It always reports 0 when reading it. 1: Both Read and Write Data FIFO pointers will be cleared. Read Data register will point to Read Data 1, and Write Data register will point to Write Data 2.
6	R/WC	SST Bus Abnormal/Contention Error(SSTBAE) This bit reports the SST/PECI line status. 0: No error 1: Abnormal/Contention error
5	R/WC	SST Slave Message Phase T-bit Extends Over Error(SSMTOE) This bit reports the SST/PECI line status. 0: No error 1: Error found
4	R/WC	SST/PECI Line High-Z Status/Failed(SLHS) This bit reports the SST/PECI line High-Z status. 0: SST/PECI line does not drive High-Z. 1: SST/PECI line drives High-Z.
3	R/WC	Write_FCS_ERR/ Bus Error(WFCSBE) Writing a 1 clears this bit. In the SST/PECI mode, it reports Write FCS error. 0: No Error 1: Write FCS error
2	R/WC	Read_FCS_ERR/ Device Error(RFEE) In the SST/PECI mode, it reports Read FCS error. 0: No Error 1: Read FCS error
1	R/WC	Finish (FNSH) Writing a 1 clears this bit. 0: None 1: This bit is set when the stop condition is detected.
0	R	HOST Busy (BUSY) 0: The current transaction is completed. 1: This bit is set while the command is in operation.

9.6.2.2.47 External Temperature Sensor Host Target Addess Register (Index=89h, Default=00h)

Bit	R/W	Description
7-0	R/W	Host Target Address Register (HAddr [7:0])
		This register is the Target Address field of the SST/PECI protocol.

9.6.2.2.48 External Temperature Sensor Host Write Length Register (Index=8Ah, Default=00h)

	Bit	R/W	Description
I	7-0	R/W	Host Write Length Register (HW_length [7:0])
			This register is the Write Length field of the SST/PECI protocol.

9.6.2.2.49 External Temperature Sensor Host Read Length Register (Index=8Bh, Default=00h)

Bit R/W Description	
---------------------	--

www.ite.com.tw 97 IT8781F V0.2.2

Bit	R/W	Description
7-0	R/W	Host Read Length Register (HR_length [7:0])
		This register is the Read Length field of the SST/PECI protocol.

9.6.2.2.50 External Temperature Sensor Host Command (Write Data 1) Register (Index=8Ch, Default=00h)

Bit	R/W	Description
7-0	R/W	Host Command Register (HCMD [7:0])
		This register is the command field of the protocol. In the PECI/SST mode, it is the
		command (Write Data 1) byte.

9.6.2.2.51 External Temperature Sensor Write Data (2-8) Register (Index=8Dh, Default=--h)

Bit	R/W	Description
7-0	R/W	Write Data (2-8) [7:0] (in SST/PECI mode)
		These registers are only valid in the PECI/SST mode and they are 7-byte FIFO registers.

9.6.2.2.52 External Temperature Sensor Host Control Register (Index=8Eh, Default=01h)

Bit	R/W	Description
7-6	R/W	Auto-Start Control (Auto-START) The host will start the transaction in a regular rate automatically. 00: 32 Hz 01: 16 Hz 10: 8 Hz 11: 4 Hz
5	R/W	Auto-Start (Auto-START) 0: Disable 1: Enable The host will start the transaction in a regular rate, which is determined by bit [6:5] automatically.
4	R/W	SST/PECI Host Auto-abort at FCS Error(HAA) This bit enables the SST/PECI host to abort the transaction when an error occurs to FCS. 0: Disable. 1: Enable
3	R/W	Data FIFO Pointer Clear(DFPC) Writing a 1 clears the Read/Write Data FIFO pointers. 0: No action. It always reports 0 when reading it. 1: Both Read and Write Data FIFO pointers will be cleared. Read Data register will point to Read Data 1, and Write Data register will point to Write Data 2.
2	R/W	SST Contention Control(SCC) This bit enables the SST bus contention control. 0: Disable 1: Enable When the SST bus is contentious, the host will abort the transaction.
1	R/W	SST_idel_High This bit sets the SST bus idle-high in the SST host mode 0: SST Idle Low 1: SST Idle High

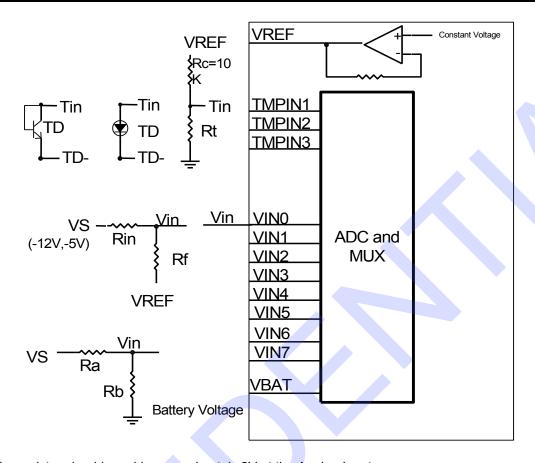
Bit	R/W	Description
0	R/W	Start (START) This bit is write-only. Writing 0 to it during transaction will issue a "kill process" and bit4 of 8Bh register will be set. Writing 1 to it during the "NOT BUSY" state (bit0 of 8Bh = 0) will start a transaction. Writing 1 to it during the "BUSY" state (bit0 of 8Bh = 1) will not issue any transaction. So, the programmer should check the "BUSY" status before issuing a transaction. 0: This bit always returns 0 at read. 1: When this bit is set, the host controller will perform the transaction.

9.6.3 Operation

9.6.3.1 Power On RESET and Software RESET

When the system power is first applied, the Environmental Controller performs a "power on reset" to all registers which are returned to default values during a system hardware reset, and the EC will acquire a monitored value before it goes inactive. The ADC is activated to monitor the VBAT pin and then goes inactive. A software reset (bit 7 of Configuration register) performs the same functions as the hardware reset except the function of the Serial Bus Interface Address register.

9.6.3.2 Starting Conversion


The monitoring function in the EC is activated when the bit 3 of Configuration Register is cleared (low) and bit 0 of Configuration Register is set (high). Otherwise, several enabled bits should be set to enable the monitoring function. Those enabled bits are categorized into three groups: positive voltages, temperatures and FAN Tachometer inputs. Before the EC monitoring function can be used, the steps below should be followed:

- 1. Set the Limits.
- 2. Set the interrupt Masks.
- Set the Enable bits.

The EC monitoring process can then be started.

Figure 9-4. Application Example

Note: The resistor should provide approximately 2V at the Analog Inputs.

9.6.3.3 Voltage and Temperature Inputs

The 8-bit ADC has a 16mV LSB, with a 0V to 4.096V input range. The 2.5V and 3.3V supplies of PC applications can be directly connected to the inputs. The 5V and 12V inputs should be divided into the acceptable range. When the divided circuit is used to measure the positive voltage, the recommended range for Ra and Rb is from $10 \text{K}\Omega$ to $100 \text{K}\Omega$. The negative voltage can be measured by the same divider where the divider is connected to VREF (constant voltage, 4.096V). Do not attempt to measure negative voltage with the divider connected to ground. The temperature measurement system of the EC converts the voltage of the TMPINs to 8-bit two's-complement. The system also includes an OP amp providing a constant voltage, an external thermistor, a constant resistance, the ADC and a conversion table ROM.

Temperature	Digital Output Format		
	Binary	Hex	
+ 125°C	01111101	7Dh	
+ 25°C	00011001	19h	
+ 1°C	00000001	01h	
+ 0°C	00000000	00h	
- 1°C	11111111	FFh	
- 25°C	11100111	E7h	
- 55°C	11001001	C9h	

With the addition of the external application circuit, the actual voltages are calculated below:

Positive Voltage: Vs = Vin X (Ra+Rb) / Rb

Negative Voltage: Vs = (1+Rin/Rf) X Vin – (Rin/Rf) X VREF

All the analog inputs are equipped with the internal diodes that clamp the input voltage exceeding the power supply and ground. But, the current limiting input resistor is recommended since no dividing circuit is available.

9.6.3.4 Layout and Grounding

A separate and low-impedance ground plane for analog ground is needed to achieve an accurate measurement. The analog ground also provides a ground point for the voltage dividers including the temperature loops and analog components. Analog components such as voltage dividers, feedback resistors and the constant resistors of the temperature loops should be located as closely as possible to the IT8781F . However, the thermistors of the temperature loops should be positioned within the measuring area. In addition, the power supply bypass and the parallel combination of $10\mu F$ and $0.1\mu F$ bypass capacitors connected between VCC and analog ground should also be located as closely as possible to the IT8781F .

Due to the small differential voltage of thermal diode (diode-connected transistor), designers should adhere to the following PCB layout:

- Position the sensor as close as possible to the EC.
- The sensor ground should be directly shorted to GNDA with excellent noise immunity
- Keep traces away from any noise source. (High voltage, fast data bus, fast clock, CRTs...)
- Use trace width of10 mil minimum and provide guard ground (flanking and under)
- Position 0.1μF bypass capacitors as close to IT8781F as possible

9.6.3.5 Fan Tachometer

The Fan Tachometer inputs gate a 22.5 kHz clock into an 8-bit or a16-bit counter (maximum count=255 or 65535) for one period of the input signals. Counts are based on 2 pulses per revolution for tachometer output.

RPM = 1.35 X 10⁶ / (Count X Divisor); (Default Divisor = 2)

The maximum input signal range is from 0 to VCC. An additional external circuit is needed to clamp the input voltage and current.

9.6.3.6 Interrupt of the EC

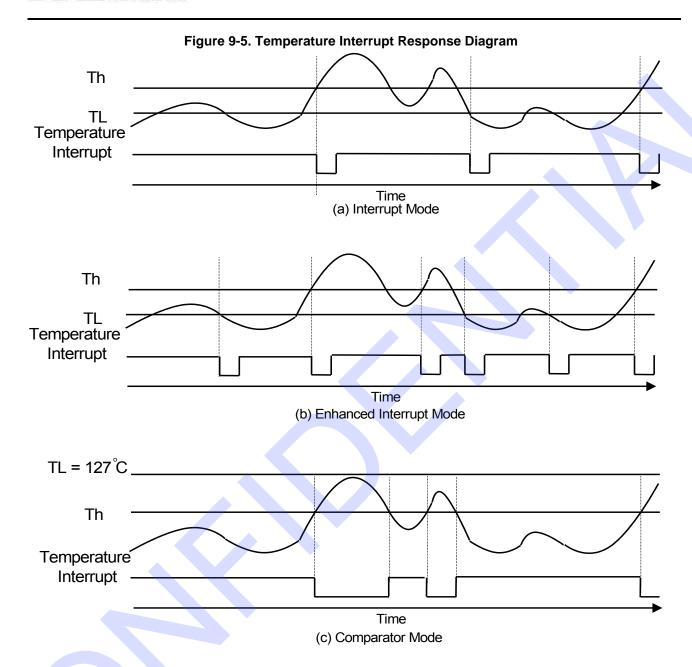
The EC generates interrupts as a result of each of its Limit registers on the analog voltage, temperature, and FAN monitor. All the interrupts are indicated in two Interrupt Status Registers. The IRQ and SMI# outputs have individual mask registers. These two Interrupts can also be enabled/disabled in the Configuration Register. The Interrupt Status Registers will be reset after being read. When the Interrupt Status Registers are cleared, the Interrupt lines will also be cleared. When a read operation is completed before the completion of the monitoring loop sequence, it indicates an Interrupt Status Register has been cleared. The EC needs 1.5 seconds to allow all the EC Registers to be safely updated between completed read operations. When the bit 3 of the Configuration Register is set to high, the Interrupt lines are cleared and the monitoring loop will be stopped. The loop will resume when this bit is cleared.

All the analog voltage inputs have high and low Limit Registers that generate Interrupts. FAN monitoring inputs only have low Limit Register to warn the host. The IT8781F provides three modes dedicated to temperature interrupts in the EC: "Interrupt" mode, "Enhanced Interrupt" mode and "Comparator" mode.

Interrupt Mode

An interrupt will be generated whenever the temperature exceeds Th limit, and the corresponding Interrupt status bits will be set to high until being reset by reading Interrupt Status Register 3. Once an interrupt event

occurs by exceeding Th limit, an interrupt will only occur again when the temperature goes below TL limit after being reset. Again, it will set the corresponding status bit to high until being reset by reading the Interrupt Status Register 3.


Enhanced Interrupt Mode

When the enhanced interrupt mode is enabled (bits 3, 6 and 7 of EC index 0Ch for TMPIN1, 2, and 3 respectively), an interrupt will be generated when the temperature is higher than the high limit or lower than the low limit.

Comparator Mode

This mode is entered when the TL limit register is set to 127°C. In this mode, an interrupt will be generated whenever the temperature exceeds the Th limit. The interrupt will also be cleared by reading the Interrupt Status Register 3, but the interrupt will be set again following the completion of another measurement cycle. It will remain set until the temperature goes below the Th limit.

9.6.3.7 FAN Controller FAN_CTL's ON-OFF and SmartGuardian Modes

The IT8781F provides an advanced FAN Controller. Two modes, ON_OFF and SmartGuardian, are provided for each controller. The former is a logical ON or OFF, and the latter is a PWM output. With the addition of external application circuits, the FAN's voltage values can be varied easily.

In the SmartGuardian Mode, there one operational choice, software control.

While under software control, the PWM value is subject to the changes in the values of bits 6-0 of FAN_CTL 1-3 PWM Control Registers (Index=15h, 16h, 17h). With the application circuits, FAN_CTL can generate 128 steps of the voltage. So, the FAN_CTL 1-3 PWM Control Registers can vary the voltage by changing the PWM value. Fan speeds or other voltage control cooling device can be varied in 128 steps.

While under automatic control, the PWM value is subject to the temperature inputs linear changes. When the **www.ite.com.tw** 103 **IT8781F V0.2.2**

temperature exceeds a start limit, FAN_CTL spins in a start PWM value (Index 73h, 6Bh, 63h). The PWM value changes depending on the temperature reading. If the temperature increases X °C, the PWM value will increase X * K. K (Slope) is a constant value with 4 bits for the integer and 3 bits for the decimal, and is determined in bit 7 of FAN_CTL 3-1 SmartGuardian Automatic mode Start PWM register and bits 5-0 of FAN_CTL 3-1 SmartGuardian Automatic mode control registers.

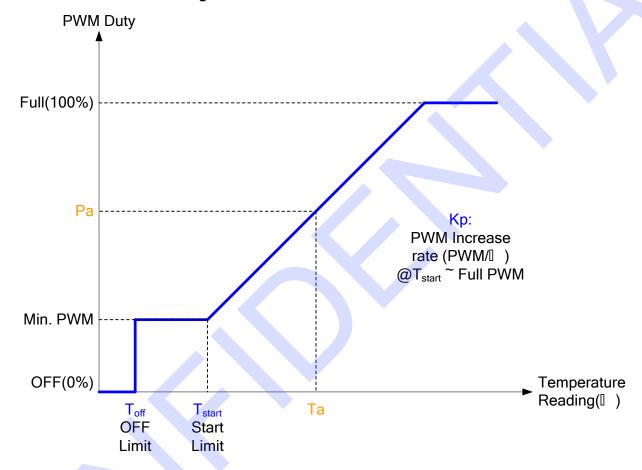


Figure 9-6. SmartGuardian Automatic Mode

PWM Output (Pa) Conditions

Pa is OFF (0%) state. ; Ta < OFF-Limit

Pa keeps at Min. PWM. ;OFF-Limit < Ta < Start-Limit > Pa = Min.-PWM + (Ta - T_{start}) * Kp ; Start-Limit < Ta < Full-Limit

Pa is Full(100%) state. ; Full PWM

Related Registers:

Clated Registers.				
Register Name	FAN_1	FAN_2	FAN_3	
FAN_CTL Output Mode	EC Index13h	EC Index13h	EC Index13h	0: ON/OFF mode
Selection	<0> = 1	<1> = 1	<2> = 1	1: SmartGuardian mode
FAN_CTL PWM Mode	EC Index15h	EC Index16h	EC Index17h	Bit-7: 0: Software operation
Automatic/Software	<7> = 1	<7> = 1	<7> = 1	1: Automatic operation
Operation Selection				
Temperature Input	EC Index15h	EC Index16h	EC Index17h	00: TMPIN1 01: TMPIN2
Selection	<1-0>	<1-0>	<1-0>	10: TMPIN3 11: Ext. TMPIN

www.ite.com.tw 104 IT8781F V0.2.2

FAN_CTL Polarity	E	C Index14h <7	>	0: Active low
				1: Active high
FAN_CTRL PWM Base	EC Index14h	EC Index55h	EC Index14h	Default = 23KHz
Clock Selection	<6-4>	<6-4>	<6-4>	
Temperature Limit of OFF	EC Index60h	ECIndex68h	EC Index70h	Set Toff Temperature Point
Registers				
Temperature Limit of Fan	EC Index61h	ECIndex69h	EC Index71h	Set Tstart Temperature Point
Start Registers				
Start PWM	EC Index63h	ECIndex6Bh	EC Index73h	Set Min. PWM Value
Registers				PWM=Bit<7-0>/256* 100%
Slope PWM Bit[6:0]	EC Index64h	ECIndex6Ch	EC Index74h	Kp =Bit<6:3> +
	<6-0>	<6-0>	<6-0>	Bit<2:0>/ 8 (PWM /℃)

9.7 Floppy Disk Controller (FDC)

9.7.1 Introduction

The Floppy Disk Controller provides the interface between a host processor and up to two floppy disk drives. It integrates a controller and a digital data separator with write precompensation, data rate selection logic, microprocessor interface, and a set of registers.

The FDC supports data transfer rates of 250 Kbps, 300 Kbps, 500 Kbps, and 1 Mbps. It operates in the PC/AT mode and supports 3-mode type drives. Additionally, the FDC is software compatible with the 82077.

The FDC configuration is handled by software and a set of Configuration registers. Status, Data, and Control registers facilitate the interface between the host microprocessor and the disk drive, providing information about the condition and/or state of the FDC. These configuration registers can select the data rate, enable interrupts, drives, and DMA modes, and indicate errors in the data or operation of the FDC/FDD.

The controller manages data transfer using a set of data transfer and control commands. These commands are handled in three phases: Command, Execution, and Result. Not all commands utilize all these three phases.

9.7.2 Reset

The IT8781F device implements both software and hardware reset options for the FDC. Either option will reset the FDC, terminating all operations and placing the FDC into an idle state. A reset during a write to the disk will corrupt the data and the corresponding CRC.

9.7.3 Hardware Reset (LRESET# Pin)

When the FDC receives an LRESET# signal, all registers of the FDC core are cleared, except those programmed by the SPECIFY command. To exit the reset state, the host must clear the DOR bit.

9.7.4 Software Reset (DOR Reset and DSR Reset)

When the reset bit in the DOR or the DSR is set, all registers of the FDC core are cleared. A reset performed by setting the reset bit in the DOR has a higher priority over a reset performed by setting the reset bit in the DSR. In addition, to exit the reset state, the DSR bit is self-clearing, while the host must clear the DOR bit.

9.7.5 Digital Data Separator

The internal digital data separator is comprised of a digital PLL and associated support circuitry. It is responsible for synchronizing the raw data signal read from the floppy disk drive. The synchronized signal is used to separate the encoded clock from the data pulses.

9.7.6 Write Precompensation

Write precompensation is a method that can be used to adjust the effects of bit shifting on data as it is written to the disk. It is harder for the data separator to read data that have been subject to bit shifting. Soft read errors can occur due to such bit shifting. Write precompensation predicts where the bit shifting might occur within a data pattern and shifts the individual data bits back to their nominal positions.

The FDC permits the selection of write precompensation via the Data Rate Select Register (DSR) bits 2 through 4.

9.7.7 Data Rate Selection

Selecting one of the four possible data rates for the attached floppy disks is accomplished by setting the Diskette Control Register (DCR) or Data Rate Select Register (DSR) bits to 0 and 1. The data rate is determined by the last value that is written to either the DCR or the DSR. When the data rate is set, the data separator clock is scaled appropriately.

9.7.8 Status, Data and Control Registers

9.7.8.1 Digital Output Register (DOR, FDC Base Address + 02h)

This is a **read/write** register. It controls drive selection and motor enable as well as a software reset bit and DMA enable. The I/O interface reset may be used at any time to clear the DOR's contents.

Bit Symbol Description 7-6 Reserved 5 MOTB EN **Drive B Motor Enable(MOTBEN)** 0: Disable 1: Enable MOTA EN 4 Drive A Motor Enable(MOTAEN) 0: Disable 1: Enable 3 DMAEN Disk Interrupt and DMA Enable(DMAEN) 0: Disable (DRQx, DACKx#, TC and INTx) 1: Enable 2 RESET# FDC Function Reset(RESET) 0: Reset the FDC function. 1: Clear the reset of the FDC function This reset does not affect the DSR, DCR or DOR. Reserved 0 DVSEL **Drive Selection(DVSEL)** 0: Drive A selected 1: Drive B selected

Table 9-4. Digital Output Register (DOR)

9.7.8.2 Tape Drive Register (TDR, FDC Base Address + 03h)

This is a **read/write** register and is included for 82077 software compatibility. The contents of this register are not used internally to the device.

Table 9-5. Tape Drive Register (TDR)

www.ite.com.tw 107 IT8781F V0.2.2

9.7.8.3 Main Status Register (MSR, FDC Base Address + 04h)

This is a **read only** register. It indicates the general status of the FDC, and is able to receive data from the host. The MSR should be read before each byte is sent to or received from the Data register, except when it is in the DMA mode.

Table 9-6. Main Status Register (MSR)

Bit	Symbol	Description				
7	RQM	Request for Master(RQM)				
		FDC Request for Master				
		0: The FDC is busy and cannot receive data from the host.				
		1: The FDC is ready and the host can transfer data.				
6	DIO	Data I/O Direction(DIO)				
		It indicates the direction of data transfer once an RQM has been set.				
		0: Write				
		1: Read				
5	NDM	Non-DMA Mode(NDM)				
		This bit selects Non-DMA mode of operation.				
		0: DMA mode selected				
		1: Non-DMA mode selected				
		This mode is selected via the SPECIFY command during the Execution phase of a				
	0.0	command.				
4	СВ	Diskette Control Busy(CB) It indicates whether a command is in progress (the EDD is busy)				
		It indicates whether a command is in progress (the FDD is busy).				
		0: A command has been executed and the end of the Result phase has been reached.				
3-2		1: A command is being executed. Reserved				
3-2	-					
1	DBB	Drive B Busy(DBB)				
		It indicates whether Drive B is in the SEEK portion of a command.				
		0: Not busy				
	DAD	1: Busy				
0	DAB	Drive A Busy(DAB)				
		It indicates whether Drive A is in the SEEK portion of a command.				
		0: Not busy				
		1: Busy				

9.7.8.4 Data Rate Select Register (DSR, FDC Base Address + 04h)

This is a **write only** register. It is used to determine the data rate, amount of write precompensation, power down mode, and software reset. The data rate of the floppy disk controller is the most recent write of either the DSR or DCR. The DSR is unaffected by a software reset. The DSR can be set to 02h by a hardware reset. The "02h" represents the default precompensation, and 250 Kbps indicates the data transfer rate.

Table 9-7. Data Rate Select Register (DSR)

Bit	Symbol	Description
7	S/W RESET	Software Reset(SWRESET)
		It is active high and shares the same function with the RESET# of the DOR, except
		that this bit is self-clearing.
6	POWER	Power Down(POWERDOWN)
	DOWN	When a "1" is written to this bit, the floppy controller is put into the manually low-power mode. The clocks of the floppy controller and data separator circuits will be turned off until software reset, Data Register or Main Status Register is accessed.

Bit	Symbol		Des	cription
5	-	Reserved		
4-2	PRE-		on Select(PRECOMP)	
	COMP 2-0	These three bits	are used to determine the	he value of write precompensation that will
		be applied to the	WDATA# pin. Track UT	s the default starting track number, which mmand for precompensation.
		can be changed	by the CONTRODICE COL	minand for precompensation.
		PRE_COMP	Precompensation	
			Delay	
		111	0.0 ns	
		001	41.7 ns	
		010	83.3 ns	
		011	125.0 ns	
		100	166.7 ns	
		101 110	208.3 ns 250.0 ns	
		000	Default	
			Delault	
		Default Prece	ompensation Delays	
		Data Rate	Precompensation	
			Delay	
		1 Mbps	41.7 ns	
		500 Kbps	125.0 ns	
		300 Kbps	125.0 ns	
		250 Kbps	125.0 ns	
4.0	DDATE4.0	Data Data Oala	(/DDATE)	
1-0	DRATE1-0	Data Rate Selec		1
		Bits 1-0	Data Transfer Rate	
		00	500 Kbps	
		01	300 Kbps	
		10	250 Kbps (default)	
		11	1 Mbps	

9.7.8.5 Data Register (FIFO, FDC Base Address + 05h)

This is an 8-bit **read/write** register. It transfers command information, diskette drive status information, and the result phase status between the host and the FDC. The FIFO consists of several registers in a stack. Only one register in the stack is permitted to transfer the information or status to the data bus at a time.

Table 9-8. Data Register (FIFO)

		<u> </u>
Bit	Symbol	Description
7-0	-	Data(DATA)
		Command information, diskette drive status, or result phase status data.

9.7.8.6 Digital Input Register (DIR, FDC Base Address + 07h)

This is a **read only** register and shares this address with the Diskette Control Register (DCR).

Table 9-9. Digital Input Register (DIR)

Bit	Symbol	Description
7	DSKCHG	Diskette Change(DSKCHG)
		It indicates the inverting value of the bit monitored from the input of the Floppy Disk Change pin (DSKCHG#).
6-0	-	Reserved

9.7.8.7 Diskette Control Register (DCR, FDC Base Address + 07h)

This is a **write only** register and shares this address with the Digital Input Register (DIR). The DCR controls the data transfer rate for the FDC.

Table 9-10. Diskette Control Register (DCR)

Bit	Symbol	Description										
7-2	-	Reserved										
		Always 0										
1-0	DRATE1-0	Data Rate Sele	ect(DRATE)									
		Bit 1-0	Data Transfer Rate									
		00	500 Kbps									
		01	300 Kbps									
		10	250 Kbps									
		11	1 Mbps									

9.7.9 Controller Phases

The FDC handles data transfer and control commands in three phases: Command, Execution and Result. Not all commands utilize these three phases.

9.7.9.1 Command Phase

Upon reset, the FDC enters the Command phase and is ready to receive commands from the host. The host must verify that MSR bit 7 (RQM) = 1 and MSR bit 6 (DIO) = 0, indicating the FDC is ready to receive data. For each command, a defined set of command code and parameter bytes must be transferred to the FDC in a given order. See section 9.7.11 Data Transfer Command on page 123 and 9.7.12 Control Command on page 126 for details of various commands. RQM is set false (0) after each byte-Read cycle, and set true (1) when a new parameter byte is required. The Command phase is completed when this set of bytes has been received by the FDC. The FDC automatically enters the next controller phase and the FIFO is disabled.

9.7.9.2 Execution Phase

Upon the completion of the Command phase, the FDC enters the Execution phase. It is in this phase that all data transfer occurs between the host and the FDC. The SPECIFY command indicates whether this data transfer occurs in the DMA or non-DMA mode. Each data byte is transferred via an IRQx or DRQx# based upon the DMA mode. On reset, the CONFIGURE command can automatically enable or disable the FIFO. The Execution phase is completed when all data bytes have been received. If the command executed does not require a Result phase, the FDC is ready to receive the next command.

9.7.9.3 Result Phase

For commands that require data written to the FIFO, the FDC enters the Result phase when the IRQ or DRQ is activated. The MSR bit 7 (RQM) and MSR bit 6 (DIO) must equal to 1 to read the data bytes. The Result phase is completed when the host has read each of the defined set of result bytes for the given command. Right after the completion of the phase, RQM is set to 1, DIO is set to 0, and the MSR bit 4 (CB) is cleared, indicating the FDC is ready to receive the next command.

9.7.9.4 Result Phase Status Registers

For commands that contain a Result phase, these **read only** registers indicate the status of the most recently executed command.

Bit **Symbol** Description 7-6 IC Interrupt Code(IC) 00: The execution of the command has been completed correctly. 01: The execution of the command is activated but fails to be completed successfully. 10: It means an invalid command. 11: The execution of the command is not completed correctly due to a polling error. 5 SE Seek End(SE) The FDC executes a SEEK or RE-CALIBRATE command. EC 4 Equipment Check(EC) The TRK0# pin is not set after a RE-CALIBRATE command is issued. 3 NU Not Used(NU) 2 Н Head Address(HA) The current head address 1 DSB Drive B Select(DSB) 0: Disable 1: enable DSA 0 Drive A Select(DSA) 0: Disable 1: enable

Table 9-11. Status Register 0 (ST0)

Table 9-12. Status Register 1 (ST1)

Bit	Symbol	Description
7	EN	End of Cylinder(EN)
		It indicates the FDC attempts to access a sector beyond the final sector of the track. This bit will be set if the Terminal Count (TC) signal is not issued after a READ DATA or WRITE DATA command.
6	NU	Not Used(NU)
5	DE	Data Error(DE)
		A CRC error occurs in either the ID field or the data field of a sector.
4	OR	Overrun / Underrun(OR)
		An overrun on a READ operation or underrun on a WRITE operation occurs when the FDC is not serviced by the CPU or DMA within the required time interval.
3	NU	Not Used(NU)
2	ND	No Data(ND)
		No data are available for the FDC when either of the following conditions occurs: • The floppy disk cannot find the indicated sector while the READ DATA or READ

www.ite.com.tw 111 IT8781F V0.2.2

Bit	Symbol	Description
		DELETED DATA commands are being executed. • While a READ ID command is being executed, an error occurs upon reading the ID field. • While a READ A TRACK command is being executed, the FDC cannot find the starting sector.
1	NW	Not Writeable(NW) It is set when WRITE DATA, WRITE DELETED DATA, or FORMAT A TRACK command is being executed on a write-protected diskette.
0	MA	Missing Address Mark(MA) This flag bit is set when either of the following conditions is met: • The FDC cannot find a Data Address Mark or a Deleted Data Address Mark on the specified track. • The FDC cannot find any ID address on the specified track after two index pulses are detected from the INDEX# pin.

Table 9-13. Status Register 2 (ST2)

Bit	Symbol	Description
7	NU	Not Used(NU)
6	CM	Control Mark(CM)
		This flag bit is set when either of the following conditions is met:
		The FDC finds a Deleted Data Address Mark during a READ DATA command.
		The FDC finds a Data Address Mark during a READ DELETED DATA command.
5	DD	Data Error in Data Field(DD)
		This flag bit is set when a CRC error is found in the data field.
4	WC	Wrong Cylinder(WC)
		This flag bit is set when the track address in the ID field is different from the track
		address specified in the FDC.
3	SH	Scan Equal Hit(SH)
		This flag bit is set when the condition of "equal" is satisfied during a SCAN
		command.
2	SN	Scan Not Satisfied(SN)
		This flag bit is set when the FDC cannot find a sector on the cylinder during a SCAN
		command.
1	BC	Bad Cylinder(BC)
		This flag bit is set when the track address equals to "FFh" and is different from the
		track address in the FDC.
0	MD	Missing Data Address Mark(MD)
		This flag bit is set when the FDC cannot find a Data Address Mark or Deleted Data
		Address Mark.

Table 9-14. Status Register 3 (ST3)

Bit	Symbol	Description
7	FT	Fault(FT)
		It indicates the current status of the Fault signal from the FDD.
6	WP	Write Protect(WP)
		It indicates the current status of the Write Protect signal from the FDD.
5	RDY	Ready(RDY)
		It indicates the current status of the Ready signal from the FDD.
4	TK0	Track 0(TK0)
		It indicates the current status of the Track 0 signal from the FDD.

Bit	Symbol	Description
3	TS	Two Side(TS)
		It indicates the current status of the Two Side signal from the FDD.
2	HD	Head Address(HD)
		It indicates the current status of the Head Select signal to the FDD.
1-0	US1, US0	Unit Select(US)
		It indicates the current status of the Unit Select signal to the FDD.

9.7.10 Command Set

The FDC utilizes a defined set of commands to communicate with the host. Each command is comprised of a unique first byte, which contains the op-code, and a series of additional bytes, which contain the required set of parameters and results. The description of the common set of parameter byte symbols, which are presented in the following table. The FDC commands may be executed whenever the FDC is in the Command phase. The FDC will check whether the first byte is a valid command or not. If yes, it will proceed. If not, an interrupt will be issued.

Table 9-15. Command Set Symbol Descriptions

Symbol	Description
С	Cylinder Number(CN)
	The current/selected cylinder (track) number: 0 – 255.
D	Data(D)
	The data pattern to be written into a sector.
DC3-DC0	Drive Configuration Bit3-0(DC)
	Designate which drives are the perpendicular drives on the PERPENDICULAR MODE command.
DIR	Direction Control(DIR)
	Read/Write Head Step Direction Control.
DD0 DD4	0 = Step Out; 1 = Step In.
DR0, DR1	Disk Drive Selection(DR)
DTL	The selected drive number: 0 or 1.
DIL	Data Length(DTL)
	When N is defined as 00h, DTL designates the number of data bytes which users are going to read out or write into the Sector. When N is not 00h, DTL is undefined.
DFIFO	Disable FIFO(DFIFO)
D1 11 0	A "1" will disable the FIFO (default) and a "0" will enable it.
EC	Enable Count(EC)
	If EC=1, DTL of VERIFY command will be SC.
EIS	Enable Implied Seek(EIS)
	If EIS=1, a SEEK operation will be performed before executing any READ or WRITE command
	that requires the C parameter.
EOT	End of Track(EOT)
	The final sector number on a cylinder. During a READ or WRITE operation, the FDC stops data
0.450	transfer after the sector number is equal to EOT.
GAP2	Gap 2 Length(GAP)
	By PERPENDICULAR MODE command, this parameter changes the format of the length of Gap 2.
GPL	Gap Length(GPL)
Ol E	The length of Gap 3. During a FORMAT command, it determines the size of Gap 3.
Н	Head Address(H)
''	The Head number 0 or 1, as specified in the sector ID field. (H = HD in all command words.)
HD	Head(HD)
	The selected Head number: 0 or 1. It also controls the polarity of HDSEL#. (H = HD in all

www.ite.com.tw 113 IT8781F V0.2.2

Symbol	Description
	command words.)
HLT	Head Load Time(HLT)
'''	The Head Load Time in the FDD (2 to 254 ms in 2 ms increments).
HUT	Head Unload Time(HUT)
1101	The Head Unload Time after a READ or WRITE operation has been executed (16 to 240 ms in
	16 ms increments).
LOCK	LOCK(LOCK)
LOOK	If LOCK=1, DFIFO, FIFOTHR, and PRETRK parameters of the CONFIGURE command will not
	be affected by a software reset. If LOCK=0 (default), the above parameters will be set to their
	default values following a software reset.
MFM	FM or MFM Mode(MFM)
	If MFM is low, FM Mode (single density) is selected. If MFM is high, MFM Mode (double density)
	is selected.
MT	Multi-Track(MT)
	If MT is high, a Multi-Track operation will be performed. In this mode, the FDC will automatically
	start searching for sector 1 on side 1 after finishing a READ/WRITE operation in the last sector
	on side 0.
N	Number(N)
	The number of data bytes written into a sector, where:
	00: 128 bytes (PC standard)
	01: 256 bytes
	02: 512 bytes
	07: 16 Kbytes
NCN	New Cylinder Number(NCN)
	A new cylinder number, which is to be reached as a result of the SEEK operation. Desired
ND	position of Head.
ND	Non-DMA Mode(ND)
0)4/	When ND is high, the FDC operates in the Non-DMA Mode.
OW	Overwrite(OW)
	If OW=1, DC3-0 of the PERPENDICULAR MODE command can be modified. Otherwise, those
PCN	bits cannot be changed.
FCN	Present Cylinder Number (PCN) The outinder number at the completion of a SENSE INTERPLIER STATUS command. Position of
	The cylinder number at the completion of a SENSE INTERRUPT STATUS command. Position of Head at present time.
POLLD	Polling Disable(POLLD)
I OLLD	If POLLD=1, the internal polling routine is disabled.
PRETRK	Precompensation Starting Track Number(PRETRK)
TIXETIME	Programmable from track 0 –255.
R	Record(R)
'`	The sector number to be read or written.
RCN	Relative Cylinder Number(RCN)
TON	To determine the relative cylinder offset from the present cylinder used by the RELATIVE SEEK
	command.
SC	Number of Sector Per Cylinder(SC)
SK	, , ,
SIX	Skip(SK) If SK=1, the Read Data operation will skip sectors with a Deleted Data Address Mark. Otherwise,
	the Read Deleted Data operation will skip sectors with a Deleted Data Address Mark. Otherwise,
SRT	Step Rate Time(SRT)
5111	The Stepping Rate for the FDD (1 to 16 ms in 1 ms increments). The stepping rate is applied to
	all drives (F=1 ms, E=2 ms, etc.).
	dii dii voo (i = i iiio, t==2 iiio, tito.j.

Symbol	Description
ST0	Status 0(ST0)
ST1	Status 1(ST1)
ST2	Status 2(ST2)
ST3	Status 3(ST3)
	ST0-3 stand for one of four registers that store the status information after a command has been executed. This information is available during the Result phase after command execution. These registers should not be confused with the Main Status Register (selected by $A_0 = 0$). ST0-3 may be read only after a command has been executed and contain information associated with that particular command.
STP	STP
	If STP = 1 during a SCAN operation, the data in contiguous sectors are compared byte by byte
	with data sent from the processor (or DMA). If STP = 2, alternate sectors are read and compared.

Table 9-16. Command Set Summary

	READ DATA										
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks	
Command	W	MT	MFM	SK	0	0	1	1	0	Command Codes	
	W	0	0	0	0	0	HDS	DR1	DR0		
	W				(0				Sector ID information before the	
	W				ŀ	1				command execution	
	W				Ī	7					
	W					V TC					
	W										
	W					PL					
	W				D.	TL					
Execution										Data transfer between the FDD and the main system	
Result	R				S.	T0				Status information after command	
	R				S	T1				execution	
	R	ST2									
	R C H								Sector ID information after command		
									execution		
	R				ſ	7					
	R				1	V					

	READ DELETED DATA												
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks			
Command	W	MT	MFM	SK	0	1	1	0	0	Command Codes			
	W	0	0	0	0	0	HDS	DR1	DR0				
	W				(•		•	Sector ID information before the			
	W				ŀ	1				command execution			
	W				F	₹							
	W				١	٧							
	W				EC	OT							
	W				GI	PL							
	W												
Execution										Data transfer between the FDD and the main system			
Result	R				Status information after command execution								
	R												
	R				S	T2							
	R				(2				Sector ID information after command			
	R				ŀ	1				execution			
	R				F	₹				1			
	R				1	V				1			

						READ	A TRAC	K				
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks		
Command	W	0	MFM	0	0	0	0	1	0	Command Codes		
	W	0	0	0	0	0	HDS	DR1	DR0	7		
	W				(3				Sector ID information before the		
	W				ŀ	1				command execution		
	W				F	₹				1		
	W				١	١				1		
	W											
	W											
	W				D ⁻	TL						
Execution								Data transfer between the FDD and main system cylinder's contents from index hole to EOT				
Result	R				S	T0				Status information after command		
	R					execution						
	R											
	R	С								Sector ID information after command		
	R				execution							
	R				F	₹				7		
	R				١	١				7		

						WRIT	E DATA	\		
					Data	Bus				
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	MT	MFM	0	0	0	1	0	1	Command Codes
	W	0	0	0	0	0	HDS	DR1	DR0	
	W				(2		•		Sector ID information before the
	W				ŀ	1				command execution
	W				F	₹				
	W				1	V				
	W				E	TC				
	W				Gl	PL				
	W				D.	TL				
Execution										Data transfer between the FDD and the main system
Result	R				S	T0				Status information after command
	R				S	T1				execution
	R				S	T2				
	R				(C				Sector ID information after command
	R				ŀ	1				execution
	R				F	₹				1
	R				1	V				7

					WR	ITE DE	LETED	DATA		
					Data	Bus				
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	MT	MFM	0	0	1	0	0	1	Command Codes
	W	0	0	0	0	0	HDS	DR1	DR0	
	W				(3				Sector ID information before the
	W				H	+				command execution
	W				F	₹				
	W				١	1				1
	W				EC	T				
	W				GF	PL				
	W				D	ΓL				
Execution										Data transfer between the FDD and the main system
Result	R				S	Γ0				Status information after command
	R				S	Γ1				execution
	R				S	Γ2				
	R				()				Sector ID information after command
	R				H	1				execution
	R				F	₹]
	R				١	1]

					F	ORMA	T A TRA	CK		
					Data	Bus				
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	0	MFM	0	0	1	1	0	1	Command Codes
	W	0	0	0	0	0	HDS	DR1	DR0	
	W		1		١	1	•	I.	ı	Bytes/Sector
	W				S	С				Sectors/Cylinder
	W				GI	PL				Gap 3
	W)				Filler Byte
Execution	W)				Input Sector Parameters per-sector
	W					1				FDC formats an entire cylinder
	W					?				
D !!	W				1				-	Otation information of the comment
Result	R					ГО				Status information after command
	R				S	Γ1				execution
	R				S	Γ2				
	R				Unde	fined				
	R				Unde	fined				1
	R				Unde	fined				
	R				Unde	fined				1

						SCAN	EQUA			
					Data					
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	MT	MFM	SK	1	0	0	0	1	Command Codes
	W	0	0	0	0	0	HDS	DR1	DR0	1
	W									Sector ID information before the
	W				ŀ					command execution
	W					3				
	W				1					
	W					T				
	W				GI					
	W				D ⁻	ΓL				
Execution										Data transferred from the system to
										controller is compared to data read from disk
Result	R				S	Γ0				Status information after command
	R				S	Γ1				execution
	R				S		1			
	R				(Sector ID information after command			
	R				H		execution			
	R				F		1			
	R	N								-

					SC	AN LO	V OR E	QUAL		
					Data	Bus				
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	MT	MFM	SK	1	1	0	0	1	Command Codes
	W	0	0	0	0	0	HDS	DR1	DR0	
	W				(C				Sector ID information before the
	W				ŀ	1				command execution
	W				F	₹				
	W				1	٧				
	W				E	TC				
	W				Gl	PL				
	W				D.	TL				
Execution										Data transferred from the system to controller is compared to data read
										from disk
Result	R				S	T0				Status information after command
	R				S	T1				execution
	R				S	T2				
	R				(C				Sector ID information after command
	R				ŀ	-				execution
	R				F	7				1
	R				1	V				1

					SC	AN HIG	HORE	QUAL		
					Data	Bus				
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	MT	MFM	SK	1	1	1	0	1	Command Codes
	W	0	0	0	0	0	HDS	DR1	DR0	
	W				(Sector ID information before the
	W				ŀ	1				command execution
	W				F	₹				
	W				١	1				
	W				EC					
	W				GI					
	W				D	ΓL				
Execution			•							Data transferred from the system to controller is compared to data read from disk
Result	R				S	Γ0				Status information after command
	R				S	Γ1				execution
	R				S	Γ2				1
	R				C)				Sector ID information after command
	R				H	1				execution
	R				F		1			
	R				١		1			

						VE	RIFY			_
					Data	Bus				
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	MT	MFM	SK	1	0	1	1	0	Command Codes
	W	EC	0	0	0	0	HDS	DR1	DR0	
	W				(2				Sector ID information before the
	W				ŀ	1				command execution
	W				F	₹				
	W				1	1				
	W				E	OT				
	W				Gl	PL				
	W				DTL	/SC				
Execution										No data transfer takes place
Result	R				S	ТО				Status information after command
	R				S	T1				execution
	R				S	Т2				
	R				(C				Sector ID information after command
	R				ŀ	Н				execution
	R				F	3				1
	R				1	١				1

						RE	AD ID			
					Data	Bus				
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	0	MFM	0	0	1	0	1	0	Command Codes
	W	0	0	0	0	0	HDS	DR1	DR0	
Execution										The first correct ID information on the Cylinder is stored in the Data Register
Result	R				S	Γ0				Status information after command
	R				S	Γ1				execution
	R				S	Γ2				
	R				()				Sector ID information during execution
	R				H	1				phase
	R				F	₹				
	R				١	1				

						CON	FIGURE			
D.	D 04/									
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	0	0	0	1	0	0	1	1	Configure Information
	W	0	0	0	0	0	0	0	0	1
	W	0	EIS	DFIFO	POLLD		FIFO	THR	·	7
					PRE	TRK				
Execution										

						RE-CA	LIBRAT	Έ		
					Data	Bus				
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	0	0	0	0	0	1	1	1	Command Codes
	W	0	0	0	0	0	0	DR1	DR0	
Execution										Head retracted to Track 0

						S	EEK			
					Data	Bus				_
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	0	0	0	0	1	1	1	1	Command Codes
	W	0	0	0	0	0	HDS	DR1	DR0	
	W				NO	CN	Į.	I.		
Execution										Head is positioned over proper cylinder on diskette

						RELAT	IVE SEE	EK		
1					Data	Bus				<u> </u>
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	1	DIR	0	0	1	1	1	1	Command Codes
	W	0	0	0	0	0	HDS	DR1	DR0	
	W				RO	CN			•	
Execution										Head is stepped in or out a programmable number of tracks

						DUN	IPREG			
					Data	Bus				
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	0	0	0	0	1	1	1	0	Command Codes
Execution										Registers placed in FIFO
Result	R				PCN-I	Orive 0				
	R				PCN-I	Orive 1				
	R				PCN-I	Orive 2				
	R				PCN-I	Orive 3				
	R		SI	RT			Н	JT		
	R	HLT ND							ND	
	R	SC/EOT								
	R	LOCK	0	DC3	DC2	DC1	DC0 FIFC	GAP	WG	
	R R	0	DIS	DFIFO	POLLD PRE		-			

	LOCK										
					Data	Bus					
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks	
Command	W	LOCK	0	0	1	0	1	0	0	Command Codes	
Result	R	0	0	0	LOCK	0	0	0	0		

VERSION										
					Data	Bus				
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	0	0	0	1	0	0	0	0	Command Codes
Result	R	1	0	0	1	0	0	0	0	Enhanced Controller

	SENSE INTERRUPT STATUS									
T					Data	Bus				
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
Command	W	0	0	0	0	1	0	0	0	Command Codes
Result	R				S	T0				Status information at the end of each
	R				PO	CN				SEEK operation

	SENSE DRIVE STATUS										
					Data	Bus					
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks	
Command	W	0	0	0	0	0	1	0	0	Command Codes	
	W	0	0	0	0	0	HDS	DR1	DR0		
Result	R				S	Status information about FDD					

	SPECIFY										
					Data	Bus					
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks	
Command	W	0	0	0	0	0	0	1	1	Command Codes	
	W		SI	रा	,		Н	JT	_		
	W				HLT				ND		

	PERPENDICULAR MODE										
					Data		_				
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks	
Command	W	0	0	0	1	0	0	1	0	Command Codes	
	W	OW	0	DC3	DC2	DC1	DC0	GAP	WG		
		•		•			•				

	INVALID									
						_				
Phase	R/W	D7	D7 D6 D5 D4 D3 D2 D1 D0							Remarks
Command	W		Invalid codes							INVALID Command Codes (NO-OP: FDC goes into the standby state)
Result	R				S		ST0 = 80h			

9.7.11 Data Transfer Command

All data transfer commands utilize the same parameter bytes (except for FORMAT A TRACK command) and return the same result data bytes. The only difference between them is the five bits (bit 0-bit 4) of the first byte.

9.7.11.1 Read Data

The READ DATA command contains nine command bytes that place the FDC into the Read Data mode. Each READ operation is initialized by a READ DATA command. The FDC locates the sector to be read by matching ID Address Marks and ID fields from the command with the information on the diskette. The FDC then transfers the data to the FIFO. When the data from the given sector have been read, the READ DATA command is completed and the sector address is automatically incremented by 1. The data from the next sector are read and transferred to the FIFO in the same manner. Such a continuous read function is called a "Multi-Sector Read Operation".

If a TC or an implied TC (FIFO overrun/underrun) is received, the FDC stops sending data, but continues to read data from the current sector and checks the CRC bytes until the end of the sector is reached and the READ operation is completed.

The sector size is determined by the N parameter value as calculated in the equation below: Sector Size = $2^{(7+N \text{ value})}$ bytes.

The DTL parameter determines the number of bytes to be transferred. Therefore, if N = 00h, setting the sector size to 128 and the DTL parameter value is less than this, the remaining bytes will be read and checked for CRC errors by the FDC. If this occurs in a WRITE operation, the remaining bytes will be filled with 0. If the sector size is not 128 (N > 00h), DTL should be set to FFh.

In addition to performing Multi-Sector Read operations, the FDC can also perform Multi-Track Read operations. When the MT parameter is set, the FDC can read both sides of a disk automatically.

The combination of N and MT parameter values determines the amount of data that can be transferred during either type of READ operation. Table 9-17 shows the maximum data transfer capacity and the final sector the FDC reads based on these parameters.

MT	N	Maximum Data Transfer Capacity	Final Sector Read from Disk
0	1	256 X 26 = 6656	26 on side 0 or side 1
1	1	256 X 52 = 13312	26 on side 1
0	2	512 X 15 = 7680	15 on side 0 or side 1
1	2	512 X 30 = 15360	15 on side 1
0	3	1024 X 8 = 8192	8 on side 0 or side 1
1	3	1024 X16 =16384	16 on side 1

Table 9-17. Effects of MT and N Bits

9.7.11.2 Read Deleted Data

The READ DELETED DATA command is the same as the READ DATA command, except that a Deleted Data Address Mark (as opposed to a Data Address Mark) is read at the beginning of the Data Field. This command is typically used to mark a bad sector on a diskette.

9.7.11.3 Read A Track

After receiving a pulse from the INDEX# pin, the READ A TRACK command reads the entire data field from each sector of the track as a continuous block. If any ID or Data Field CRC error is found, the FDC continues to read data from the track and indicates the error at the end. Because the Multi-Track [and Skip] operation[s] is[are] not allowed under this command, the MT and SK bits should be low (0) during the command execution.

This command terminates normally when the number of sectors specified by EOT has not been read. If, however, no ID Address Mark has been found by the second occurrence of the INDEX pulse, the FDC will set the IC code in the ST0 to 01, indicating an abnormal termination, and then finish the command.

9.7.11.4 Write Data

The WRITE DATA command contains nine command bytes that place the FDC into the Write Data mode. Each WRITE operation is initialized by a WRITE DATA command. The FDC locates the sector to be written by reading ID fields and matching the sector address from the command with the information on the diskette. Then the FDC reads the data from the host via the FIFO and writes the data into the sector's data field. Finally, the FDC computes the CRC value, storing it in the CRC field and increments the sector number (stored in the R parameter) by 1. The next data field is written into the next sector in the same manner. Such a continuous write function is called a "Multi-Sector Write Operation".

If a TC or an implied TC (FIFO overrun/underrun) is received, the FDC stops writing data and fills the remaining data fields with 0s. If a check of the CRC value indicates an error in the sector ID Field, the FDC will set the IC code in the ST0 to 01 and the DE bit in the ST1 to 1, indicating an abnormal termination, and then terminate the WRITE DATA command. The maximum data transfer capacity and the DTL, N, and MT parameters are the same as in the READ DATA command.

9.7.11.5 Write Deleted Data

The WRITE DELETED DATA command is the same as the WRITE DATA command, except that a Deleted Data Address Mark (instead of a Data Address Mark) is written at the beginning of the Data Field. This command is typically used to mark a bad sector on a diskette.

9.7.11.6 Format A Track

The FORMAT A TRACK command is used to format an entire track. Initialized by an INDEX pulse, it writes data to the Gaps, Address Marks, ID fields and Data fields according to the density mode selected (FM or MFM). The Gap and Data field values are controlled by the host-specified values programmed into N, SC, GPL, and D during the Command phase. The Data field is filled with the data byte specified by D. The four data bytes per sector (C, H, R, and N) needed to fill the ID field are supplied by the host. The C, R, H, and N values must be renewed for each new sector of a track. Only the R parameter value must be changed when a sector is formatted, allowing the disk to be formatted with non-sequential sector addresses. These steps are repeated until a new INDEX pulse is received, at which point the FORMAT A TRACK command is terminated.

9.7.11.7 Scan

The SCAN command allows the data read from the disk to be compared with the data sent from the system. There are the following three SCAN commands:

SCAN EQUAL Disk Data = System Data

SCAN HIGH OR EQUAL Disk Data ≥ System Data

SCAN LOW OR EQUAL Disk Data ≤ System Data

The SCAN command execution continues until the scan condition has been met, or when the EOT has been reached, or if TC is asserted. Read errors on the disk have the same error condition as the READ DATA command. If the SK bit is set, sectors with Deleted Data Address Marks are ignored. If all sectors read are skipped, the command terminates with the D3 bit of the ST2 being set. The Result phase of the command is shown below:

Table 9-18. SCAN Command Result

		• • • • • • • • • • • • • • • • • • • •	
Command	Status F	Register D3	Condition
SCAN EQUAL	0	1	Disk = System
	1	0	Disk ≠ System
SCAN HIGH OR EQUAL	0	1	Disk = System
	0	0	Disk > System
	1	0	Disk < System
SCAN LOW OR EQUAL	0	1	Disk = System
	0	0	Disk < System
	1	0	Disk > System

9.7.11.8 Verify

The VERIFY command is used to read logical sectors containing a Normal Data Address Mark from the selected drive without transferring the data to the host. This command acts like a READ DATA command except that no data are transferred to the host. This command is designed for post-format or post write verification. Data are read from the disk, as the controller checks for valid Address Marks in the Address and Data Fields. The CRC is computed and checked against the previously stored value. Because no data are transferred to the host, the TC (Terminal Count of DMA) cannot be used to terminate this command. An implicit TC will be issued to the FDC by setting the EC bit. This implicit TC will occur when the SC value has been decremented to 0. This command can also be terminated by clearing the EC bit and when the EOT value is equal to the final sector to be checked.

Table 9-19. VERIFY Command Result

MT	EC	SC/EOT	Termination Result
0	0	SC = DTL	No Error
		EOT ≤ # Sectors per side	
0	0	SC = DTL	Abnormal Termination
		EOT > # Sectors per side	
0	1	SC ≤ # Sectors Remaining AND	No Error
		EOT ≤ # Sectors per side	
0	1	SC > # Sectors Remaining OR	Abnormal Termination
		EOT > # Sectors per side	
1	0	SC = DTL	No Error
		EOT > # Sectors per side	
1	0	SC = DTL	Abnormal Termination
		EOT > # Sectors per side	
1	1	SC ≤ # Sectors Remaining AND	No Error
		EOT ≤ # Sectors per side	
1	1	SC > # Sectors Remaining OR	Abnormal Termination
		EOT > # Sectors per side	

9.7.12 Control Command

The control commands do not transfer any data. Instead, these commands are used to monitor and manage the data transfer. Three of them, READ ID, RE-CALIBRATE and SEEK, generate an interrupt after completion. It is strongly recommended that a SENSE INTERRUPT STATUS command be issued after these commands to capture their valuable interrupt information. The RE-CALIBRATE, SEEK, and SPECIFY commands do not return any result bytes.

Functional Description

9.7.12.1 Read ID

The READ ID command is used to find the actual recording head position. It stores the first readable ID field value into the FDC registers. If the FDC cannot find an ID Address Mark by the time the second INDEX pulse is received, an abnormal termination will be generated by setting the IC code in the ST0 to 01.

9.7.12.2 Configure

The CONFIGURE command determines some special operation modes of the controller. It needs not to be issued if the default values of the controller meet the system requirements.

EIS: Enable Implied Seeks. A SEEK operation is performed before a READ, WRITE, SCAN, or VERIFY command.

0 = Disabled (default).

1 = Enabled.

DFIFO: Disable FIFO.

0 = Enabled.

1 = Disabled (default).

POLLD: Disable polling of the drives.

0 = Enabled (default). When enabled, a single interrupt is generated after a reset.

1 = Disabled.

FIFOTHR: The FIFO threshold in the execution phase of data transfer commands. They are programmable from 00 to 0F hex (1 byte to 16 bytes). Default to 1 byte.

PRETRK: The Precompensation Start Track Number. They are programmable from track 0 to FF hex (track 0 to track 255). Default to track 0.

9.7.12.3 Re-calibrate

The RE-CALIBRATE command retracts the FDC read/write head to the track 0 position, resetting the value of the PCN counter and checking the TRK0# status. If TRK0# is low, the DIR# pin remains low and step pulses are issued. If TRK0# is high, SE [and EC bits] of the ST0 are set high, and the command is terminated. When TRK0# remains low for 79 step pulses, the RE-CALIBRATE command is terminated by setting SE and EC bits of ST0 to high. Consequently, for disks that can accommodate more than 80 tracks, more than one RE-CALIBRATE command is required to retract the head to the physical track 0.

The FDC is in a non-busy state during the Execution phase of this command, making it possible to issue another RE-CALIBRATE command in parallel with the current command.

On power-up, software must issue a RE-CALIBRATE command to properly initialize the FDC and the drives attached.

9.7.12.4 Seek

The SEEK command controls the FDC read/write head movement from one track to another. The FDC compares the current head position, stored in PCN, with NCN values after each step pulse to determine what direction to move the head if required. The direction of movement is determined below:

PCN < NCN — Step In: Sets DIR# signal to 1 and issues step pulses.

PCN > NCN — Step Out: Sets DIR# signal to 0 and issues step pulses.

PCN = NCN — Terminate the command by setting the ST0 SE bit to 1.

The impulse rate of step pulse is controlled by Stepping Rate Time (SRT) bit in the SPECIFY command. The FDC is in a non-busy state during the Execution phase of this command, making it possible to issue another SEEK command in parallel with the current command.

9.7.12.5 Relative Seek

The RELATIVE SEEK command steps the selected drive in or out in a given number of steps. The DIR bit is used to determine to step in or out. RCN (Relative Cylinder Number) is used to determine how many tracks to step the head in or out from the current track. After the step operation is completed, the controller generates an interrupt, but the command has no Result phase. No other command except the SENSE INTERRUPT STATUS command should be issued while a RELATIVE SEEK command is in progress.

9.7.12.6 **Dumpreg**

The DUMPREG command is designed for system run-time diagnostics, application software development, and debug. This command has one byte of Command phase and 10 bytes of Result phase, which return the values of the parameter set in other commands.

9.7.12.7 Lock

The LOCK command allows the programmer to fully control the FIFO parameters after a hardware reset. If the LOCK bit is set to 1, the parameters of DFIFO, FIFOTHR, and PRETRK in the CONFIGURE command are not affected by a software reset. If the bit is set to 0, those parameters are set to default values after a software reset.

9.7.12.8 Version

The VERSION command is used to determine the controller being used. In Result phase, a value of 90 hex is returned in order to be compatible with the 82077.

9.7.12.9 Sense Interrupt Status

The SENSE INTERRUPT STATUS command resets the interrupt signal (IRQ) generated by the FDC, and identifies the cause of the interrupt via the IC code and SE bit of the ST0, as shown in Table 9-20. It may be necessary to generate an interrupt when any of the following conditions occur:

- Before any Data Transfer or READ ID command
- After SEEK or RE-CALIBRATE commands (no result phase exists)
- When a data transfer is required during an Execution phase in the non-DMA mode

Table 9-20. Interrupt Identification

SE	IC Code	Cause of Interrupt	
0	11	Polling	
1	00	Normal termination of SEEK or RE-CALIBRATE command	
1	01	Abnormal termination of SEEK or RE-CALIBRATE command	

9.7.12.10 Sense Drive Status

The SENSE DRIVE STATUS command acquires drive status information. It has no Execution phase.

9.7.12.11 Specify

The SPECIFY command sets the initial values for the HUT (Head Unload Time), HLT (Head Load Time), SRT

Functional Description

(Step Rate Time), and ND (Non-DMA mode) parameters. The possible values for HUT, SRT, and HLT are shown in the following three tables respectively. The FDC is operated in DMA or non-DMA mode based on the value specified by the ND parameters.

Table 9-21. HUT Value

Parameter	1 Mbps	500 Kbps	300 Kbps	250 Kbps
0	128	256	426	512
1	8	16	26.7	32
-	-	-	-	-
E	112	224	373	448
F	120	240	400	480

Table 9-22. SRT Value

Parameter	1 Mbps	500 Kbps	300 Kbps	250 Kbps
0	8	16	26.7	32
1	7.5	15	25	30
-	-	-	-	-
E	1	2	3.33	4
F	0.5	1	1.67	2

Table 9-23, HLT Value

Parameter	1 Mbps	500 Kbps	300 Kbps	250 Kbps
00	128	256	426	512
01	1	2	3.33	4
02	2	4	6.7	8
-	-	<u>-</u>	-	-
7E	126	252	420	504
7F	127	254	423	508

9.7.12.12 Perpendicular Mode

The PERPENDICULAR MODE command is used to support the unique READ/WRITE/FORMAT commands of Perpendicular Recording disk drives (4 Mbytes unformatted capacity). This command configures each of the four logical drives as a perpendicular or conventional disk drive via the DC3-DC0 bits, or with the GAP and WG control bits. Perpendicular Recording drives operate in the "Extra High Density" mode at 1 Mbps, and are downward compatible with 1.44 Mbyte and 720 kbyte drives at 500 Kbps (High Density) and 250 Kbps (Double Density) respectively. This command should be issued during the initialization of the floppy disk controller. Then, when a drive is accessed for a FORMAT A TRACK or WRITE DATA command, the controller adjusts the format or Write Data parameters based on the data rate. If WG and GAP are used (not set to 00), the operation of the FDC is based on the values of GAP and WG. If WG and GAP are set to 00, setting DCn to 1 will set drive n to the Perpendicular mode. DC3-DC0 are unaffected by a software reset, but WG and GAP are both cleared to 0 after a software reset.

Table 9-24. Effects of GAP and WG on FORMAT A TRACK and WRITE DATA Commands

GAP	WG	Mode	Length of GAP2 FORMAT FIELD	Portion of GAP2 Re-Written by WRITE DATA Command
0	0	Conventional	22 bytes	0 bytes
0	1	Perpendicular (500 Kbps)	22 bytes	19 bytes
1	0	Reserved (Conventional)	22 bytes	0 bytes
1	1	Perpendicular (1 Mbps)	41 bytes	38 bytes

Table 9-25. Effects of Drive Mode and Data Rate on FORMAT A TRACK and WRITE DATA Commands

Data Rate	Drive Mode	Length of GAP2 FORMAT FIELD	Portion of GAP2 Re-Written by WRITE DATA Command
250/300/500 Kbps	Conventional	22 bytes	0 bytes
	Perpendicular	22 bytes	19 bytes
1 Mbps	Conventional	22 bytes	0 bytes
	Perpendicular	41 bytes	38 bytes

9.7.12.13 Invalid

The INVALID command indicates when an undefined command has been sent to FDC. The FDC will set bit 6 and bit 7 in the Main Status Register to 1 and terminate the command without issuing an interrupt.

9.7.13 DMA Transfers

DMA transfer is enabled by the SPECIFY command and initiated by the FDC by activating the LDRQ# cycle during a DATA TRANSFER command. The FIFO is enabled directly by asserting the LPC DMA cycle.

9.7.14 Low Power Mode

When writing a "1" to the bit 6 of the DSR, the controller is set to the low-power mode immediately. All the clock sources including Data Separator, Microcontroller, and Write precompensation unit, will be gated. The FDC can be resumed from the low-power state in two ways: one is a software reset via the DOR or DSR, and the other is a read or write to either the Data Register or Main Status Register. The second method is more preferred since all internal register values are retained.

9.8 Serial Port (UART) Description

The IT8781F incorporates two enhanced serial ports that perform serial to parallel conversion on received data, and parallel to serial conversion on transmitted data. Each of the serial channels individually contains a programmable baud rate generator which is capable of dividing the input clock by a number ranging from 1 to 65535. The data rate of each serial port can also be programmed from 115.2K baud down to 50 baud. The character options are programmable for 1 start bit; 1, 1.5 or 2 stop bits; even, odd, stick or no parity; and privileged interrupts.

Register	DLAB*	Address	READ	WRITE
Data	0	Base + 0h	RBR (Receiver Buffer Register)	TBR (Transmitter Buffer Register)
	0	Base + 1h	IER (Interrupt Enable Register)	IER
	x	Base + 2h	IIR (Interrupt Identification Register)	FCR (FIFO Control Register)
Control	X	Base + 3h	LCR (Line Control Register)	LCR
	X	Base + 4h	MCR (Modem Control Register)	MCR
	1	Base + 0h	DLL (Divisor Latch LSB)	DLL
	1	Base + 1h	DLM (Divisor Latch MSB)	DLM
	Х	Base + 5h	LSR (Line Status Register)	LSR
Status	Х	Base + 6h	MSR (Modem Status Register)	MSR
	Х	Base + 7h	SCR (Scratch Pad Register)	SCR

Table 9-26. Serial Channel Registers

9.8.1 Data Register (RBR and TBR)

The TBR and RBR individually hold five to eight data bits. If the transmitted data are less than eight bits, it aligns to the LSB. Either received or transmitted data are buffered by a shift register, and are latched first by a holding register. The bit 0 of any word is first received and transmitted.

(1) Receiver Buffer Register (RBR) (Read only, Address offset=0, DLAB=0)

This register receives and holds the incoming data. It contains a non-accessible shift register which converts the incoming serial data stream into a parallel 8-bit word.

(2) Transmitter Buffer Register (TBR) (Write only, Address offset=0, DLAB=0)

This register holds and transmits the data via a non-accessible shift register, and converts the outgoing parallel data into a serial stream before the data transmission.

9.8.2 Control Register (IER, IIR, FCR, DLL, DLM, LCR and MCR)

(1) Interrupt Enable Register (IER) (Read/Write, Address offset=1, DLAB=0)

The IER is used to enable (or disable) four active high interrupts which activate the interrupt outputs with its lower four bits: IER(0), IER(1), IER(2), and IER(3).

www.ite.com.tw 131 IT8781F V0.2.2

^{*} DLAB is bit 7 of the Line Control Register.

Table 9-27. Interrupt Enable Register Description

Bit	Default	Description		
7-4	-	Reserved		
3	0	Enable Modem Status Interrupt(EMSI)		
		Set this bit high to enable the modem status interrupt when one of the modem status registers changes its bit status.		
2	0	Enable Receiver Line Status Interrupt(ERLSI)		
		Set this bit high to enable the receiver line status interrupt, which happens when		
		overrun, parity, framing or break occurs.		
1	0	Enable Transmitter Holding Register Empty Interrupt(ETHREI)		
		Set this bit high to enable the transmitter holding register empty interrupt.		
0	0	Enable Received Data Available Interrupt(ERDAI)		
		Set this bit high to enable the received data available interrupt and time-out interrupt in		
		the FIFO mode.		

(2) Interrupt Identification Register (IIR) (Read only, Address offset=2)

This register facilitates the host CPU to determine the interrupt priority and its source. The priority of four existing interrupt levels is listed below:

- 1. Receiver Line Status (highest priority)
- 2. Received Data Ready
- 3. Transmitter Holding Register Empty
- 4. Modem Status (lowest priority)

When a privileged interrupt is pending and the type of interrupt is stored in the IIR which is accessed by the Host, the serial channel holds back all interrupts and indicates the pending interrupts with the highest priority to the Host. Any new interrupts will not be acknowledged until the Host access is completed. The contents of the IIR are described in the following table.

Functional Description

Table 9-28. Interrupt Identification Register

FIFO Mode	lde	nterrup ntificat Registe	ion	Interrupt Set and Reset Function			on
Bit 3	Bit 2	Bit 1	Bit 0	Priority Level	Interrupt Type	Interrupt Source	Interrupt Reset Control
0	Х	Х	1	1	None	None	-
0	1	1	0	First	Receiver Line Status	OE, PE, FE, or BI	Read LSR
0	1	0	0	Second	Received Data Available	Received Data Available	Read RBR or FIFO drops below the trigger level
1	1	0	0	Second	Character Time-out Indication	No characters have been removed from or input to the RCVR FIFO during the last four character times and there is at least one character in it during this time	Read RBR
0	0	1	0	Third	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Read IIR if THRE is the Interrupt Source Write THR
0	0	0	0	Fourth	Modem Status	CTS#, DSR#, RI#, DCD#	Read MSR

Note: X = Not Defined

IIR(7), IIR(6): Set when FCR(0) = 1.

IIR(5), IIR(4): Always logic 0.

IIR(3): In the non-FIFO mode, this bit is a logic 0. In the FIFO mode, this bit is set along with bit 2 when a time-out Interrupt is pending.

IIR(2), IIR(1): Used to identify the highest priority interrupt pending.

IR(0): Used to indicate a pending interrupt in either a hard-wired prioritized or polled environment with a logic 0 state. In such a case, IIR contents may be used as a pointer that points to the appropriate interrupt service routine.

(3) FIFO Control Register (FCR) (Write Only, Address offset=2)

This register is used to not only enable and clear the FIFO but also set the RCVR FIFO trigger level.

Table 9-29. FIFO Control Register Description

Bit	Default	Description			
7-6	-	Receiver Trigger Level Selection			
		These bits set the trigger level for the RCVR FIFO interrupt.			
5-4	0	Reserved			
3	0	Reserved			
		(This bit does not affect the Serial Channel operation. RXRDY and TXRDY functions are not available on this chip.)			
2	0	Transmitter FIFO Reset(TFR)			
		This self-clearing bit clears all contents of the XMIT FIFO and resets its related counter to 0 via a logic "1".			
1	0	Receiver FIFO Reset(RFR)			
		Setting this self-clearing bit to a logic 1 clears all contents of the RCVR FIFO and resets its related counter to 0 (except the shift register).			
0	0	FIFO Enable(FIFOE)			
		XMIT and RCVR FIFOs are enabled when this bit is set high. XMIT and RCVR FIFOs			
		are disabled and cleared respectively when this bit is cleared to low. This bit must be a			
		logic 1 if the other bits of the FCR are written to, or they will not be properly			
		programmed. When this register is switched to the non-FIFO mode, all of its contents are cleared.			

Table 9-30. Receiver FIFO Trigger Level Encoding

FCR (7)	FCR (6)	RCVR FIFO Trigger Level
0	0	1 byte
0	1	4 bytes
1	0	8 bytes
1	1	14 bytes

(4) Divisor Latches (DLL, DLM) (Read/Write, Address offset=0,1 DLAB=0)

Two 8-bit Divisor Latches (DLL and DLM) store the divisor values in a 16-bit binary format. They are loaded during the initialization to generate a desired baud rate.

(5) Baud Rate Generator (BRG)

Each serial channel contains a programmable BRG which can take any clock input (from DC to 8 MHz) to generate standard ANSI/CCITT bit rates for the channel clocking with an external clock oscillator. The DLL or DLM is a number of 16-bit format, providing the divisor ranging from 1 to 2 to obtain the desired baud rate. The output frequency is 16X data rate.

Table 9-31. Baud Rate Using (24 MHz ÷ 13) Clock

Desired Baud Rate	Divisor Used
50	2304
75	1536
110	1047
134.5	857
150	768
300	384
600	192
1200	96
1800	64
2000	58
2400	48
3600	32
4800	24
7200	16
9600	12
19200	6
38400	3
57600	2
115200	1

(6) Scratch Pad Register (Read/Write, Address offset=7)

This 8-bit register does not control the UART operation in any way. It is intended as a scratch pad register to be used by programmers to temporarily hold general purpose data.

(7) Line Control Register (LCR) (Read/Write, Address offset=3)

LCR controls the format of the data character and supplies the information of the serial line. Its contents are described in the following table.

Table 9-32. Line Control Register Description

Bit	Default	Description
7	0	Divisor Latch Access Bit (DLAB)
		This bit must be set high to access the Divisor Latches of the baud rate generator
		during READ or WRITE operation. It must be set low to access the Data Registers
	_	(RBR and TBR) or the Interrupt Enable Register.
6	0	Set Break(SB)
		This bit forces the Serial Output (SOUT) to the spacing state (logic 0) by a logic 1,
		which will be preserved until a low level resetting LCR(6), enabling the serial port to
	0	alert the terminal in a communication system.
5	0	Stick Parity(SP)
		When this bit and LCR(3) are high at the same time, the parity bit is transmitted and
		then detected by a receiver in an opposite state by LCR(4) to force the parity bit into a
4	0	known state and to check the parity bit in a known state. Even Parity Selection(EPS)
4	U	· · · ·
		When the parity is enabled (LCR(3) = 1), LCR(4) = 0 selects the odd parity and LCR(4) = 1 selects the even parity.
3	0	Parity Enable(PE)
		A parity bit, located between the last data word bit and stop bit, will be generated or
		checked (transmit or receive data) when LCR(3) is high.
2	0	Number of Stop Bit (NSB)
_		This bit specifies the number of stop bit in each serial character, as summarized in
		Table 9-33. Stop Bit Number Encoding on page 136.
1-0	00	Word Length Select [1:0](WLS)
		11: 8 bits
		10: 7 bits
		01: 6 bits
		00: 5 bits

Table 9-33. Stop Bit Number Encoding

_					
LCR (2)	Word Length	No. of Stop Bit			
0	-	1			
1	5 bits	1.5			
1	6 bits	2			
1	7 bits	2			
1	8 bits	2			

Note: The receiver will ignore all stop bits beyond the first, regardless of the number used in transmission.

(8) Modem Control Register (MCR) (Read/Write, Address offset=4)

This register controls the interface by the modem or data set (or device emulating a modem).

Table 9-34. Modem Control Register Description

Bit	Default	Description
7-5	-	Reserved
4	0	Internal Loopback(IL)
		This bit provides a loopback feature for diagnostic test of the serial channel when it is set high. Serial Output (SOUT) is set to the Marking State Shift Register output loops

Functional Description

Bit	Default	Description
		back into the Receiver Shift Register. All Modem Control inputs (CTS#, DSR#, RI# and DCD#) are disconnected. The four Modem Control outputs (DTR#, RTS#, OUT1 and OUT2) are internally connected to the four Modem Control inputs, and are forced to inactive high and the transmitted data are immediately received, allowing the processor to verify the transmit and receive data path of the serial channel.
3	0	OUT2(OUT2)
		The Output 2 bit enables the serial port interrupt output by a logic 1.
2	0	OUT1(OUT1)
		This bit does not have an output pin and can only be read or written by the CPU.
1	0	Request to Send (RTS)
		This bit controls the Request to Send (RTS#), which is in an inverse logic state with that of MCR(1).
0	0	Data Terminal Ready (DTR) This bit ccontrols the Data Terminal Ready (DTR#), which is in an inverse logic state with that of the MCR(0).

9.8.3 Status Registers: LSR and MSR

(1) Line Status Register (LSR) (Read/Write, Address offset=5)

This register provides the status indication and is usually the first register read by the CPU to determine the cause of an interrupt or to poll the status of each serial channel. The contents of the LSR are described below:

Table 9-35. Line Status Register Description

Bit	Default	Description									
7	0	Error in Receiver FIFO(ERF)									
		In the 16450 mode, this bit is always 0. In the FIFO mode, it sets high when there is at									
		least one parity error, framing or break interrupt in the FIFO. This bit is cleared when									
	4	the CPU reads the LSR if there are no subsequent errors in the FIFO.									
6	1	Transmitter Empty(TE)									
		This read only bit indicates that the Transmitter Holding Register and Transmitter Shift									
		Register are both empty. Otherwise, this bit is "0" and has the same function as that in the FIFO mode.									
5	1	Transmitter Holding Register Empty(THRE)									
		This read only bit indicates that the TBR is empty and is ready to accept a new									
		character for transmission. It is set high when a character is transferred from the THR									
		into the Transmitter Shift Register, causing a priority 3 IIR interrupt which is cleared by									
		a read of IIR. In the FIFO mode, it is set when the XMIT FIFO is empty, and is cleared									
		when at least one byte is written to the XMIT FIFO.									
4	0	Line Break(LB)									
		The Line Break(LB) Interrupt status bit indicates that the last character received is a									
		break character, which is invalid but complete. It includes parity and stop bits. This									
		occurs when the received data input is held in the spacing (logic 0) for longer than a full word transmission time (start bit + data bits + parity + stop bit). When any of these									
		error conditions is detected (LSR(1) to LSR(4)), a Receiver Line Status interrupt									
		(priority 1) will be generated in the IIR, with the IER(2) previously enabled.									
3	0	Framing Error(FE)									
		A logic 1 indicates that the stop bit in the received character is not valid. It will be reset									
		low when the CPU reads the contents of the LSR.									
2	0	Parity Error(PE)									
		A logic 1 indicates that the received data character does not have the correct even or									

www.ite.com.tw 137 IT8781F V0.2.2

Bit	Default	Description
		odd parity, as selected by LCR(4). It will be reset to "0" whenever LSR is read by the CPU.
1	0	Overrun Error(OE) A logic 1 indicates that the RBR has been overwritten by the next character before it had been read by the CPU. In the FIFO mode, OE occurs when FIFO is full and the next character has been completely received by the Shift Register. It will be reset when LSR is read by the CPU.
0	0	Data Ready(DR) A "1" indicates a character has been received by the RBR. A logic "0" indicates all the data in RBR or RCVR FIFO have been read.

(2) Modem Status Register (MSR) (Read/Write, Address offset=6)

This 8-bit register indicates the current state of the control lines with modems or the peripheral devices in addition to this current state information. Four of these eight bits MSR(4) - MSR(7) can provide the state change information when the modem control input changes the state. It is reset low when the Host reads the MSR.

Table 9-36. Modem Status Register Description

Bit	Default	Description						
7	0	Data Carrier Detect(DCD)						
		It indicates the complement status of Data Carrier Detect (DCD#) input. If MCR(4) = 1,						
		MSR(7) is equivalent to OUT2 of the MCR.						
6	0	Ring Indicator(RI)						
		It indicates the complement status to the RI# input. If MCR(4)=1, MSR(6) is equivalent						
		to OUT1 in the MCR.						
5	0	Data Set Ready(DSR)						
		It indicates that the modem is ready to provide received data to the serial channel						
		receiver circuitry. If the serial channel is in the Loop mode (MCR(4) = 1), MSR(5) is						
	•	equivalent to DTR# in the MCR.						
4	0	Clear to Send(CTS)						
		It indicates the complement of CTS# input. When the serial channel is in the Loop						
		mode (MCR(4)=1), MSR(5) is equivalent to RTS# in the MCR.						
3	0	Delta Data Carrier Detect(DDCD)						
		It indicates that the DCD# input state has been changed since being read by the Host						
		last time.						
2	0	Trailing Edge Ring Indicator(TERI)						
		It indicates that the RI input state to the serial channel has been changed from low to						
		high since being read by the Host last time. The change in a logic "1" does not activate						
4	0	the TERI.						
1	0	Delta Data Set Ready(DDSR)						
		A logic "1" indicates that the DSR# input state to the serial channel has been changed						
	0	since being read by the Host last time.						
0	0	Delta Clear to Send(DCTS)						
		This bit indicates the CTS# input to the chip has changed the state since MSR was						
		read last time.						

Functional Description

9.8.4 Reset

The reset of the IT8781F should be held to an idle mode reset high for 500 ns until initialization, which causes the initialization of the transmitter and receiver internal clock counters.

Table 9-37. Reset Control of Register and Pinout Signal

Register/Signal	Reset Control	Reset Status			
Interrupt Enable Register	Reset	All bits Low			
Interrupt Identification Register	Reset	Bit 0 is high and bits 1-7 are low			
FIFO Control Register	Reset	All bits Low			
Line Control Register	Reset	All bits Low			
Modem Control Register	Reset	All bits Low			
Line Status Register	Reset	Bits 5 and 6 are high, others are low			
Modem Status Register	Reset	Bits 0-3 low, bits 4-7 input signals			
SOUT1, SOUT2	Reset	High			
RTS1#, RTS2#, DTR1#, DTR2#	Reset	High			
IRQ of Serial Port	Reset	High Impedance			

9.8.5 Programming

Each serial channel of the IT8781F is programmed by control registers, whose contents define the character length, number of stop bits, parity, baud rate and modem interface. Even though these control registers can be written in any given order, the IER should be the last register written because it controls whether the interrupt is enabled or not. After the port is programmed, these registers still can be updated whenever the port does not transfer data.

9.8.6 Software Reset

This approach allows the serial port to return to a completely known state without a system reset. It is achieved by writing the required data to the LCR, DLL, DLM and MCR. The LSR and RBR must be read before interrupts are enabled to clear out any residual data or status bits that may be invalid for subsequent operations.

9.8.7 Clock Input Operation

The input frequency of the Serial Channel is 24 MHz ÷ 13, not exactly 1.8432 MHz.

9.8.8 FIFO Interrupt Mode Operation

(1) RCVR Interrupt

When setting FCR(0)=1 and IER(0)=1, the RCVR FIFO and receiver interrupts are enabled. The RCVR interrupt occurs under the following conditions:

The receive data available interrupt will be issued only if the FIFO has reached its programmed trigger level. They will be cleared as soon as the FIFO drops below its trigger level.

The receiver line status interrupt has higher priority over the received data available interrupt.

The time-out timer will be reset after receiving a new character or after the Host reads RCVR FIFO whenever a time-out interrupt occurs. The timer will be reset when the Host reads one character from RCVR FIFO.

RCVR FIFO time-out Interrupt: By enabling the RCVR FIFO and receiver interrupts, the RCVR FIFO time-out interrupt will occur under the following conditions:

The RCVR FIFO time-out interrupt will occur only if there is at least one character in FIFO whenever the interval between the most recently received serial character and the most recent Host READ from the FIFO is longer than four consecutive character times.

The time-out timer will be reset after receiving a new character or after the Host reads RCVR FIFO whenever a time-out interrupt occurs. The timer will be reset when the Host reads one character from RCVR FIFO.

(2) XMIT Interrupt

By setting FCR(0) and IER(1) high, the XMIT FIFO and transmitter interrupts are enabled, and the XMIT interrupt occurs under the following conditions:

- a. The transmitter interrupt occurs when the XMIT FIFO is empty, and it will be reset if the THR is written or the IIR is read.
- b. The transmitter FIFO empty indications will be delayed one character time minus the last stop bit time whenever the following condition occurs:

THRE = 1 and there have not been at least two bytes in the transmitter FIFO at the same time since the last THRE = 1. The transmitter interrupt after changing FCR(0) will be immediate if it is enabled. Once the first transmitter interrupt is enabled, the THRE indication is delayed one character time minus the last stop bit time.

The character time-out and RCVR FIFO trigger level interrupts are in the same priority order as the received data available interrupt. The XMIT FIFO empty is in the same priority as the transmitter holding register empty interrupt.

FIFO Polled Mode Operation [FCR(0)=1, and IER(0), IER(1), IER(2), IER(3) or all are 0].

Either or both XMIT and RCVR can be in this operation mode. The operation mode can be programmed by users and is responsible for checking the RCVR and XMIT status via LSR described below:

LSR(7): RCVR FIFO error indication

LSR(6): XMIT FIFO and Shift register empty

LSR(5): The XMIT FIFO empty indication

LSR(4) - LSR(1): Specify that errors have occurred. The character error status is handled in the same way as that in the interrupt mode. The IIR is not affected since IER(2)=0.

LSR(0): High whenever RCVR FIFO contains at least one byte. No trigger level is reached or time-out condition indicated in the FIFO Polled Mode.

9.9 Smart Card Reader

9.9.1 Features

As an IFD (InterFace Device) is built into the IT8781F, the Smart Card Reader (SCR) is accessed through a standard UART (Either Serial Port 1 or Serial Port 2 is set in SCR mode) to control the Smart Card interface handshaking and perform data transfers. The signals can be connected directly to a smart card socket. The Smart Card is capable of providing secure storage facilities for sensitive personal information (such as Private keys, Account numbers, Passwords, Medical information, ...etc.). The SCR can also be used for a broad range of applications in GSM, ID, pay TV, banking (refer to EMV'96 Spec.), etc.... A Smart Card clock divider for those ICC (Integrated Circuit Card) without internal clocks is also provided.

9.9.2 Operation

The SCR is a low-power consumption design. When the IFD is inactive, the clock divider will turn off internal clocks and the clock of the IFD monitoring state machine is turned off to save power. The clocks can be reactivated immediately if an IC card is removed or when the FET control function is turned on or off.

The VCC power of the IC card interface is powered from an external FET to protect the smart card interface. The charge/discharge time for the FET to reach 5V/0V is programmable, and the FET performs automatically to meet ISO 7816 activation and deactivation sequences. The UART's modem control lines: DTR#, RTS# and DCD# are used to control the FET on/off, Smart Card Reset signal, and the IC card insertion detection respectively. When an IC card is being inserted, it will switch the SCRPSNT# (Smart Card Present Detect#) and then cause the DCD# signal to trigger an interrupt to the system. Following the interrupt, in the Smart Card interrupt service routine, the driver should assert the DTR# signal to power on the external FET (SCRPFET#) and the RTS# signal to control the Smart Card Reset signal (SCRRST). Meanwhile, the IT 8781F will generate the proper clock frequency to allow the IC card using default serial transfer baud rate to send back an ATR (Answer-To-Reset) sequence. The interface signals are enabled after VCC reaches the correct voltage level. Finally, a transfer protocol may be negotiated to promote more efficient transfers. In the same way, when the IC card is removed after the ICC processing is finished, the driver can de-assert the DTR# to turn off the FET power. Prior to FET power-off and reset, clock and data signals will be de-activated, followed by sufficient FET discharge time to guarantee protection of the IC card and IFD.

9.9.3 Connection of IFD to ICC Socket

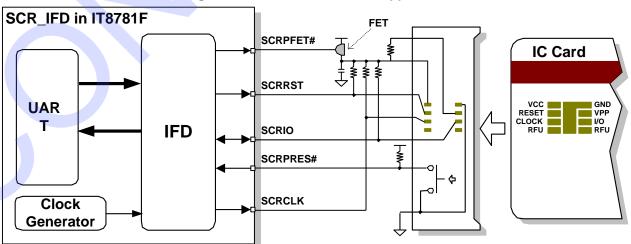


Figure 9-7. Smart Card Reader Application

www.ite.com.tw 141 IT8781F V0.2.2

9.9.4 Baud Rate Relationship Between UART and Smart Card Interface

To perform serial transfers correctly, the baud rate of the UART must be set to coincide with the ICC card.

Formula (Variation < 2%)

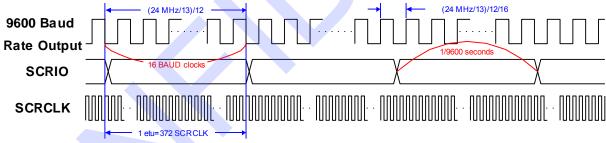
Baud Rate =
$$\frac{UART}{\frac{24 \text{ MHz}}{13}} \approx \frac{Smart Card}{SCRCLK*D}$$

N =Divisor of UART, assigned by programming the DLM (Divisor Latch MSB) and DLL (Divisor Latch LSB). F =Clock Rate Conversion Factor, default = 372.

D =Bit Rate Adjustment Factor, Default is 1.

SCRCLK duty cycle is 45%-55%.

ICC With Internal Clock


If the ICC uses its own built-in internal clock, the Baud rate is 9600 baud. The only programming needed to the IT8781F is the Divisor Latch Registers of UART for SCR IFD.

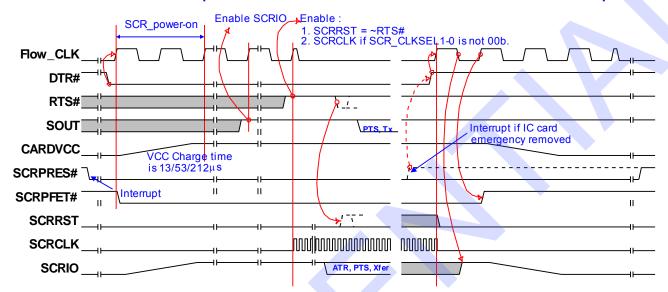
ICC Without Internal Clock

The baud rate is SCRCLK/372 before negotiation, and SCRCLK is limited to be between 1 MHz - 5MHz. During the ATR sequence, the default F value (Clock Rate Conversion Factor) is 372, and the default D value (Bit Rate Adjustment Factor) is 1.

9.9.5 Waveform Relationship

9.9.6 Clock Divider

The SCRCLK is generated by the selection of SCR_CLKSEL1-0, which are determined in the S1 Special Configuration register 3 (LDN1_F2h) or S2 Special Configuration register 3 (LDN2_F2h).


Table 9-38. SCRCLK Selection

SCR_CLKSEL1-0	Selection
00	Stop
01	3.5 MHz
10	7.1 MHz
11	96 MHz / SCR DIV96M Note

Note: SCR DIV96M is determined by S1 Special Configuration Register 4 (LDN1_F3h) or S2 Special Configuration Register 4 (LDN2_F3h).

9.9.7 Waveform Example of Activation/Deactivation Sequence

Activation Sequence

Refer to the waveform above. After the SCR IFD is in data receive mode (i.e. the SOUT from UART is high), and the RTS# is programmed to go high, the SCRCLK is enabled to output to the IC card (meaning the IC card counts SCRCLK clocks to start ATR responses), the data transfer is then enabled, and the SCRRST is the inverse logic state of RTS#. This operation procedure guarantees the correct activation sequence even if the driver cannot program the SCRCLK and SCRRST at the precise time points. In this way, the hardware meets the ICC specification.

ATR

For IC cards with their own internal reset, the ATR begins within 400-40000 SCRCLK cycles. If no ATR is detected, the Smart Card IFD driver can then program the RTS# to low, and cause the SCRRST to high.

For some types of IC cards without internal reset signals, their SCRRST is active low, and begins the ATR within 400-40000 SCRCLK cycles from the time of SCRRST rising edge.

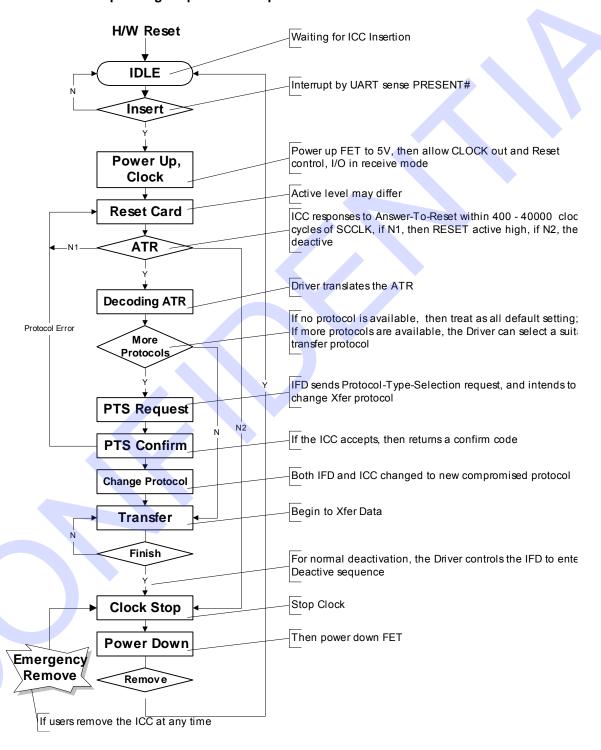
The IT8781F does not support IC Cards that send synchronous ATRs

Deactivation and PTS Structure

Whenever the IC card is removed or when the IFD driver intends to power off the SCR interface, the IFD will enter the deactivation sequence.

9.9.8 ATR and PTS Structure

The contents of the ATR (Answer-To-Reset) and PTS (Protocol-Type-Select) are defined in ISO/IEC 7816-X standards, which must be fully communicated by the ICC Resource manager, the ICC Service provider or the ICC application software.


After finalizing the coherent protocol, the SCR IFD enters the normal transfer mode. Since the SCRIO is the

www.ite.com.tw 143 IT8781F V0.2.2

only data channel for both data transmit and receive as defined in the ICC Specification, the IT8781F can only support the half-duplex function. The SCRRST can be resent when a data transfer error occurs, and then the IFD driver will select a safer, lower-speed protocol to perform the data transfers again.

9.9.9 Smart Card Operating Sequence Example

9.10 Parallel Port

The IT8781F incorporates one multi-mode high performance parallel port, which supports the IBM AT, PS/2 compatible bi-directional Standard Parallel Port (SPP), the Enhanced Parallel Port (EPP) and the Extended Capabilities Port (ECP). Please refer to the IT8781F configuration registers and their description for information on enabling/ disabling, changing the base address of the parallel port, and operation mode selection.

Table 9-39. Parallel Port Connector in Different Modes

Host Connector	Pin No.	SPP	EPP	ECP	
1	11	STB#	WRITE#	NStrobe	
2-9	12- 19	PD0 - 7	PD0 - 7	PD0 - 7	
10	6	ACK#	INTR	nAck	
11	5	BUSY	WAIT#	Busy PeriphAck(2)	
12	4	PE	(NU) (1)	PError nAckReverse(2)	
13	3	SLCT	SLCT (NU) (1) Select		
14	10	AFD#	DSTB#	nAutoFd HostAck(2)	
15	9	ERR#	(NU) (1)	nFault nPeriphRequest(2)	
16	8	INIT#	(NU) (1)	nInit nReverseRequest(2)	
17	7	SLIN#	ASTB# nSelectIn		

Note 1: NU: Not used. Note 2: Fast mode.

Note 3: For more information, please refer to the IEEE 1284 standard.

9.10.1 SPP and EPP Modes

Table 9-40. Address Map and Bit Map for SPP and EPP Modes

Register	Address	1/0	D0	D1	D2	D3	D4	D5	D6	D7	Mode
Data Port	Base 1+0h	R/W	PD0	PD1	PD2	PD3	PD4	PD5	PD6	PD7	SPP/EPP
Status Port	Base 1+1h	R	TMOUT	1	1	ERR#	SLCT	PE	ACK#	BUSY#	SPP/EPP
Control Port	Base 1+2h	R/W	STB	AFD	INIT	SLIN	IRQE	PDDIR	1	1	SPP/EPP
EPP Address Port	Base 1+3h	R/W	PD0	PD1	PD2	PD3	PD4	PD5	PD6	PD7	EPP
EPP Data Port0	Base 1+4h	R/W	PD0	PD1	PD2	PD3	PD4	PD5	PD6	PD7	EPP
EPP Data Port1	Base 1+5h	R/W	PD0	PD1	PD2	PD3	PD4	PD5	PD6	PD7	EPP
EPP Data Port2	Base 1+6h	R/W	PD0	PD1	PD2	PD3	PD4	PD5	PD6	PD7	EPP
EPP Data Port3	Base 1+7h	R/W	PD0	PD1	PD2	PD3	PD4	PD5	PD6	PD7	EPP

Note 1: The Base address 1 depends on the Logical Device configuration registers of Parallel Port (0X60, 0X61).

(1) Data Port (Base Address 1 + 00h)

This is a bi-directional 8-bit data port. The direction of data flow is determined by the bit 5 of the logic state of the control port register. It forwards directions when the bit is low and reverses directions when the bit is high.

(2) Status Port (Base Address 1 + 01h)

This is a **read only** register. Writing to this register has no effects. The contents of this register are latched during an IOR cycle.

Bit 7 - BUSY#: Inverse of printer BUSY signal, a logic "0" means that the printer is busy and cannot accept another character. A logic "1" means that it is ready to accept the next character.

Bit 6 - ACK#: Printer acknowledge, a logic "0" means that the printer has received a character and is ready to accept another. A logic "1" means that it is still processing the last character.

Bit 5 - PE: Paper end, a logic "1" indicates the paper end.

Bit 4 - SLCT: Printer selected, a logic "1" means that the printer is on line.

Bit 3 - ERR#: Printer error signal, a logic "0" means an error has been detected.

Bits 2, 1 - Reserved: These bits are always "1" at read.

Bit 0 - TMOUT: This bit is valid only in the EPP mode and indicates that a 10-msec time-out has occurred in EPP operation. A logic "0" means no time-out occurs and a logic "1" means that a time-out error has been detected. This bit is cleared by an LRESET# or by writing a logic "1" to it. When the IT8781F is selected to the non-EPP mode (SPP or ECP), this bit is always a logic "1" at read.

(3) Control Port (Base Address 1 + 02h)

This port provides all output signals to control the printer. The register can be read and written.

Bits 6, 7- Reserved: These two bits are always "1" at read.

Bit 5 - PDDIR: Data port direction control. This bit determines the direction of the data port register. Set this bit "0" to output the data port to PD bus, and "1" to input from PD bus.

Bit 4 - IRQE: Interrupt request enable. Setting this bit "1" enables the interrupt requests from the parallel port to the Host. An interrupt request is generated by a "0" to "1" transition of the ACK# signal.

Bit 3 - SLIN: Inverse of SLIN# pin. Setting this bit to "1" selects the printer.

Bit 2 - INIT: Initiate printer. Setting this bit to "0" initializes the printer.

Bit 1 - AFD: Inverse of the AFD# pin. Setting this bit to "1" causes the printer to automatically advance one line after each line is printed.

Bit 0 - STB: Inverse of the STB# pin. This pin controls the data strobe signal to the printer.

(4) EPP Address Port (Base Address 1 + 03h)

The EPP Address Port is only available in the EPP mode. When the Host writes to this port, the contents of D0 -D7 are buffered and output to PD0 - PD7. The leading edge of IOW (Internal signal, active when LPC I/O WRITE cycle is on this address) causes an EPP ADDRESS WRITE cycle. When the Host reads from this port, the contents of PD0 - PD7 are read. The leading edge of IOR (Internal signal, active when LPC I/O READ cycle is on this address) causes an EPP ADDRESS READ cycle.

(5) EPP Data Ports 0-3 (Base Address 1 + 04-07h)

The EPP Data Ports are only available in the EPP mode. When the Host writes to these ports, the contents of D0 - D7 are buffered and output to PD0 - PD7. The leading edge of IOW (Internal signal, active when LPC I/O WRITE cycle is on this address) causes an EPP DATA WRITE cycle. When the Host reads from these ports, the contents of PD0 - PD7 are read. The leading edge of IOR (Internal signal, active when LPC I/O READ cycle is on this address) causes an EPP DATA READ cycle.

9.10.2 EPP Mode Operation

When the parallel port of the IT8781F is set in the EPP mode, the SPP mode is also available. If no EPP Address/Data Port address is decoded (Base address + 03h- 07h), the PD bus is in the SPP mode, and the output signals such as STB#, AFD#, INIT#, and SLIN# are set by the SPP control port. The direction of the data port is controlled by bit 5 of the control port register. There is a 10-msec time required to prevent the system from lockup. The time has elapsed from the beginning of the IOCHRDY (Internal signal: When active, the IT8781F will issue Long Wait in SYNC field) high (EPP READ/WRITE cycle) to WAIT# being de-asserted.

Functional Description

If a time-out occurs, the current EPP READ/WRITE cycle is aborted and a logic "1" will be read in the bit 0 of the status port register. The Host must write 0 to bits 0, 1, 3 of the control port register before any EPP READ/WRITE cycle (EPP spec.). The pins STB#, AFD# and SLIN# are controlled by hardware for the hardware handshaking during EPP READ/WRITE cycle.

(1) EPP ADDRESS WRITE

- The Host writes a byte to the EPP Address Port (Base address + 03h). The chip drives D0 D7 onto PD0 PD7.
- 2. The chip asserts WRITE# (STB#) and ASTB# (SLIN#) after IOW becomes active.
- 3. The peripheral de-asserts WAIT#, indicating that the chip may begin the termination of this cycle. Then, the chip de-asserts ASTB#, latches the address from D0 D7 to PD bus, allowing the Host to complete the I/O WRITE cycle.
- 4. The peripheral asserts WAIT#, indicating that it acknowledges the termination of the cycle. Then, the chip de-asserts WRITE to terminate the cycle.

(2) EPP ADDRESS READ

- 1. The Host reads a byte from the EPP Address Port. The chip drives PD bus to tri-state for the peripheral to drive.
- 2. The chip asserts ASTB# after IOR becomes active.
- 3. The peripheral drives the PD bus valid and de-asserts WAIT#, indicating that the chip may begin the termination of this cycle. Then, the chip de-asserts ASTB#, latches the address from PD bus to D0 -D7, allowing the Host to complete the I/O READ cycle.
- 4. The peripheral drives the PD bus to tri-state and then asserts WAIT#, indicating that it acknowledges the termination of the cycle.

(3) EPP DATA WRITE

- The host writes a byte to the EPP Data Port (Base address +04H 07H). The chip drives D0- D7 onto PD0 -PD7.
- 2. The chip asserts WRITE# (STB#) and DSTB# (AFD#) after IOW becomes active.
- 3. The peripheral de-asserts WAIT#, indicating that the chip may begin the termination of this cycle. Then, the chip de-asserts DSTB#, latches the data from D0 D7 to the PD bus, allowing the Host to complete the I/O WRITE cycle.
- 4. The peripheral asserts WAIT#, indicating that it acknowledges the termination of the cycle. Then, the chip de-asserts WRITE to terminate the cycle.

(4) EPP DATA READ

- 1. The Host reads a byte from the EPP DATA Port. The chip drives PD bus to tri-state for the peripheral to drive.
- 2. The chip asserts DSTB# after IOR becomes active.
- 3. The peripheral drives PD bus valid and de-asserts WAIT#, indicating that the chip may begin the termination of this cycle. Then, the chip de-asserts DSTB#, latches the data from PD bus to D0 D7, allowing the host to complete the I/O READ cycle.
- 4. The peripheral tri-states the PD bus and then asserts WAIT#, indicating that it acknowledges the termination of the cycle.

9.10.3 ECP Mode Operation

This mode is both software and hardware compatible with the existing parallel ports, allowing ECP to be used as a standard LPT port when the ECP mode is not required. It provides an automatic high-burst-bandwidth channel that supports DMA or the ECP mode in both forward and reverse directions. A 16-byte FIFO is implemented in both forward and reverse directions to smooth data flow and enhance the maximum

www.ite.com.tw 147 IT8781F V0.2.2

bandwidth requirement allowed. The port supports automatic handshaking for the standard parallel port to improve compatibility and expedite the mode transfer. It also supports run-length encoded (RLE) decompression in hardware. Compression is accomplished by counting identical bytes and transmitting an RLE byte that indicates how many times a byte has been repeated. The IT8781F does not support hardware RLE compression. For the detailed description, please refer to "Extended Capabilities Port Protocol and ISA Interface Standard".

Table 9-41. Bit Map of the ECP Register

Register	D7	D6	D5	D4	D3	D2	D1	D0				
data	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0				
ecpAFifo	Addr/RLE		Address or RLE field									
dsr	nBusy	nAck	PError	Select	nFault	1	1	1				
dcr	1	1	PDDIR	IRQE	SelectIn	nInit	AutoFd	Strobe				
cFifo				Parallel Por	t Data FIFO							
ecpDFifo				ECP Da	ita FIFO							
tFifo				Test	FIFO							
cnfgA	0	0	0	1	0	0	0	0				
cnfgB	0	intrValue	0	0	0	0	0	0				
ecr		mode		nErrIntrEn	dmaEn	ServiceIntr	full	empty				

(1) ECP Register Definitions

Table 9-42. ECP Register Definitions

Name	Address	1/0	ECP Mode	Function
data	Base 1 +000H	R/W	000-001	Data Register
ecpAFifo	Base 1 +000H	R/W	011	ECP FIFO (Address)
dsr	Base 1 +001H	R/W	All	Status Register
dcr	Base 1 +002H	R/W	All	Control Register
cFifo	Base 2 +000H	R/W	010	Parallel Port Data FIFO
ecpDFifo	Base 2 +000H	R/W	011	ECP FIFO (DATA)
tFifo	Base 2 +000H	R/W	110	Test FIFO
cnfgA	Base 2 +000H	R	111	Configuration Register A
cnfgB	Base 2 +001H	R/W	111	Configuration Register B
ecr	Base 2 +002H	R/W	All	Extended Control Register

Note 1: The Base address 1 depends on the Logical Device configuration registers of Parallel Port (0X60, 0X61).

Note 2: The Base address 2 depends on the Logical Device configuration registers of Parallel Port (0X62, 0X63).

(2) ECP Mode Description

Table 9-43. ECP Mode Description

Mode	Descri	ption
000	Standard Parallel Port Mode	
001	PS/2 Parallel Port Mode	
010	Parallel Port FIFO Mode	
011	ECP Parallel Port Mode	
110	Test Mode	
111	Configuration Mode	

Note: Please refer to the ECP Register Description for the detailed description of the mode selection.

(3) ECP Pin Description

Table 9-44. ECP Pin Description

Name	Attribute	Description
nStrobe (HostClk)	0	Used for handshaking with Busy to write data and addresses into the peripheral device.
PD0-PD7	I/O	Address or data or RLE data.
nAck (PeriphClk)	I	Used for handshaking with nAutoFd to transfer data from the peripheral device to the Host.
Busy (PeriphACK)	I	The peripheral uses this signal for flow control in the forward direction (handshaking with nStrobe). In the reverse direction, this signal is used to determine whether a command or data information is present on PD0-PD7.
Perror (nAckReverse)	I	Used to acknowledge nlnit from the peripheral which drives this signal low, allowing the host to drive the PD bus.
Select	I	Printer On-Line Indication.
nAutoFd (HostAck)	0	In the reverse direction, it is used for handshaking between the nAck and the Host. When it is asserted, a peripheral data byte is requested. In the forward direction, this signal is used to determine whether a command or data information is present on PD0 - PD7.
nFault (nPeriphRequest)		In the forward direction (only), the peripheral is allowed (but not required) to assert this signal (low) to request a reverse transfer while bring in the ECP mode. The signal provides a mechanism for peer-to-peer communication. It is typically used to generate an interrupt to the host, which has the ultimate control over the transfer direction.
nInit (nReverseRequest)	0	The host may drive this signal low to place the PD bus in the reverse direction. In the ECP mode, the peripheral is permitted to drive the PD bus when nInit is low, and nSelectIn is high.
NSelectIn (1284 Active)	0	Always inactive (high) in the ECP mode.

(4) Data Port (Base 1+00h, Modes 000 and 001)

Its contents will be cleared by a RESET. In a WRITE operation, the contents of the LPC data fields are latched by the Data Register. The contents are then sent without being inverted to PD0-PD7. In an READ operation, the contents of data ports are read and sent to the host.

(5) ecpAFifo Port (Address/RLE) (Base 1 +00h, Mode 011)

Any data byte written to this port are placed in FIFO and tagged as an ECP Address/RLE. The hardware then automatically sends these data to the peripheral. Operation of this port is valid only in the forward direction (dcr(5)=0).

(6) Device Status Register (dsr) (Base 1 +01h, Mode All)

Bit 0, 1 and 2 of this register are not implemented. The states of these bits remain high in a READ operation of the Printer Status Register.

- dsr(7): This bit is the inverted level of the Busy input.
- dsr(6): This bit is the state of the nAck input.
- dsr(5): This bit is the state of the PError input.
- dsr(4): This bit is the state of the Select input.
- dsr(3): This bit is the state of the nFault input.
- dsr(2)-dsr(0): These bits are always 1.

(7) Device Control Register (dcr) (Base 1+02h, Mode All)

Bit 6 and 7 of this register have no function. They are set high during the READ operation, and cannot be written. Contents in bit 0-5 are initialized to 0 when the RESET pin is active.

- dcr(7)-dcr(6): These two bits are always high.
- dcr(5): Except in the modes 000 and 010, setting this bit low means that the PD bus is in output operation; setting it high, in input operation. This bit will be forced to low in mode 000.
- dcr(4): Setting this bit high enables the interrupt request from peripheral to the host due to a rising edge of the nAck input.
- dcr(3): It is inverted and output to Selectin.
- dcr(2): It is output to nInit without inversion.
- dcr(1): It is inverted and output to nAutoFd.
- dcr(0): It is inverted and output to nStrobe.

(8) Parallel Port Data FIFO (cFifo) (Base 2+00h, Mode 010)

Bytes written or DMA transferred from the Host to this FIFO are sent by a hardware handshaking to the peripheral according to the Standard Parallel Port protocol. This operation is only defined for the forward direction.

(9) ECP Data FIFO (ecpDFifo) (Base 2+00h, Mode 011)

When the direction bit dcr(5) is 0, bytes written or DMA transferred from the Host to this FIFO are sent by hardware handshaking to the peripheral according to the ECP parallel port protocol. When dcr(5) is 1, data bytes from the peripheral to this FIFO are read in an automatic hardware handshaking. The Host can receive these bytes by performing READ operations or DMA transfers from this FIFO.

(10) Test FIFO (tFifo) (Base 2+00h, Mode 110)

The host may operate READ/WRITE or DMA transfers to this FIFO in any directions. Data in this FIFO will be displayed on the PD bus without using hardware protocol handshaking. The tFifo will not accept new data after it is full. Making a READ from an empty tFifo causes the last data byte to return.

(11) Configuration Register A (cnfgA) (Base 2+00h, Mode 111)

This **read only** register indicates to the system that interrupts are ISA-Pulses compatible. This is an 8-bit implementation by returning a 10h.

Functional Description

(12) Configuration Register B (cnfgB) (Base 2+01h, Mode 111)

This register is read only.

cnfgB(7): A logic "0" read indicates that the chip does not support hardware RLE compression.

cnfgB(6): Reserved.

cnfgB(5)-cnfg(3): A value 000 read indicates that the interrupt must be selected with jumpers.

cnfgB(2)-cnfg(0): A value 000 read indicates that the DMA channel is jumpered 8-bit DMA.

(13) Extended Control Register (ecr) (Base 2+02h, Mode All)

This is an ECP function control register.

ecr(7)-ecr(5): These bits are used for READ/WRITE and mode selection.

Table 9-45. Extended Control Register (ECR) Mode and Description

ECR	Mode and Description
000	Standard Parallel Port Mode(SPPM)
000	The FIFO is reset and the direction bit dcr(5) is always 0 (forward direction) in this mode.
	PS/2 Parallel Port Mode(PPPM)
001	It is similar to the SPP mode, except that the dcr(5) is read/write. When dcr(5) is 1, the PD bus is
001	tri-state. Reading the data port returns the value on the PD bus instead of the value of the data
	register.
	Parallel Port Data FIFO Mode(PPDFM)
010	This mode is similar to the 000 mode, except that the Host writes or DMA transfers the data bytes to
010	FIFO. The FIFO data are then transmitted to the peripheral using the standard parallel port protocol
	automatically. This mode is only valid in the forward direction (dcr(5)=0).
	ECP Parallel Port Mode(EPPM)
011	In the forward direction, bytes placed into the ecpDFifo and ecpAFifo are placed in a single FIFO and
	automatically transmitted to the peripheral under the ECP protocol. In the reverse direction, bytes are
	transmitted to the ecpDFifo from the ECP port.
100, 101	Reserved; undefined
110	Test Mode(TM)
110	In this mode, FIFO may be read from or written to, but it cannot be sent to the peripheral.
111	Configuration Mode(CM)
	In this mode, the cnfgA and cnfgB registers are accessible at 0x400 and 0x401.

ecr(4): nErrIntrEn, READ/WRITE, Valid in ECP(011) Mode

- 1: Disables the interrupt generated on the asserting edge of the nFault input.
- 0: Enables the interrupt pulse on the asserting edge of the nFault. An interrupt pulse will be generated if nFault is asserted or if this bit is written from 1 to 0 in the low-level nFault.

ecr(3): dmaEn, READ/WRITE

- 1: Enables DMA. DMA starts when serviceIntr (ecr(2)) is 0.
- 0: Disables DMA unconditionally.

ecr(2): ServiceIntr, READ/WRITE

- 1: Disables DMA and all service interrupts.
- 0: Enables the service interrupts. This bit will be set to "1" by hardware when one of the three service interrupts occurs.

Writing "1" to this bit will not generate an interrupt.

Case 1: dmaEn=1

During DMA, this bit is set to 1 (a service interrupt generated) if the terminal count is reached.

Case 2: dmaEn=0, dcr(5)=0

This bit is set to 1 (a service interrupt generated) whenever there is writeIntrThreshold or more bytes space free in the FIFO.

Case 3: dmaEn=0, dcr(5)=1

This bit is set to 1 (a service interrupt generated) whenever there is readIntrThreshold or more valid bytes to be read from FIFO.

ecr(1): full, read only

- 1: FIFO is full and cannot accept another byte.
- 0: FIFO has at least one free data byte space.

ecr(0): empty, read only

- 1: FIFO is empty.
- 0: FIFO contains at least one data byte.

(14) Mode Switching Operation

In programmed I/O control (mode 000 or 001), P1284 negotiation and all other tasks that happen before data transmission are software-controlled. Setting the mode to 011 or 010 will cause the hardware to perform an automatic control-line handshaking, transferring information between the FIFO and the ECP port.

From the mode 000 or 001, any other modes may be immediately switched to any other modes. To change direction, the mode must first be set to 001.

In the extended forward mode, the FIFO must be cleared and all the signals must be de-asserted before returning to mode 000 or 001. In the ECP reverse mode, all data must be read from FIFO before returning to mode 000 or 001. Usually, unneeded data are accumulated during ECP reverse handshaking, when the mode is changed during a data transfer. In such a condition, nAutoFd will be de-asserted regardless of the transfer state. To avoid bugs during handshaking signals, these guidelines must be followed.

(15) Software Operation (ECP)

Before the ECP operation can be started, it is necessary for the Host first to switch the mode to 000 in order to negotiate with the parallel port. During this process, the Host determines whether the peripheral supports the ECP protocol.

After this negotiation is completed, the mode is set to 011 (ECP). To enable the drivers, the direction must be set to 0. Both strobe and autoFd are set to 0, causing nStrobe and nAutoFd signals to be de-asserted.

All FIFO data transfer is PWord wide and PWord aligned. Permitted only in the forward direction, Address/RLE transfers are byte-wide. The ECP Address/RLE bytes may be automatically sent by writing to the ecpAFifo. Similarly, data PWords may be automatically sent via the ecpDFifo.

To change directions, the Host switches the mode to 001. It then negotiates either the forward or reverse channel, sets the direction to 1 or 0, and finally switches the mode to 001. If the direction is set to 1, the hardware performs the handshaking for each ECP data byte read, and then tries to fill the FIFO. At this time, PWords may be read from the ecpDFifo while it retains data. It is also possible to perform the ECP transfer by handshaking with individual bytes under programmed control in mode = 001, or 000 even though this is a comparatively time-consuming approach.

(16) Hardware Operation (DMA)

The Standard PC DMA protocol (through LDRQ#) is followed. As in the programmed I/O case, software sets the direction and state. Next, the desired count and memory addresses are programmed into DMA controller. The dmaEn is set to 1, and the serviceIntr is set to 0. To complete the process, the DMA channel with the DMA controller is unmasked. The contents in the FIFO are emptied or filled by DMA using the right mode and direction.

Functional Description

DMA is always transferred to or from FIFO located at 0 x 400. By generating an interrupt and asserting a serviceIntr, DMA is disabled when the DMA controller reaches the terminal count. By not asserting LDRQ# for more than 32 consecutive DMA cycles, blocking of refresh requests is eliminated.

When it is necessary to disable a DMA while performing transfer, the host DMA controller is disabled, serviceIntr is then set to 1, and dmaEn is next set to 0. If the contents in FIFO are empty or full, DMA will start again. This is first done by enabling the host DMA controller, and then setting dmaEn to 1. Finally, serviceIntr is set to 0. Upon completion of a DMA transfer in the forward direction, the software program must wait until the contents in FIFO are empty and the busy line is low, ensuring that all data successfully reach the peripheral device.

(17) Interrupt

It is necessary to generate an interrupt when any of the following states are reached.

- 1. serviceIntr = 0, dmaEn = 0, direction = 0, and the number of PWords in the FIFO is greater than or equal to writeIntrThreshold.
- 2. serviceIntr = 0, dmaEn = 0, direction = 1, and the number of PWords in the FIFO is greater than or equal to readIntrThreshold.
- 3. serviceIntr = 0, dmaEn = 1, and DMA reaches the terminal count.
- 4. nErrIntrEn = 0 and nFault goes from high to low or when nErrIntrEn is set from 1 to 0 and nFault is asserted.
- 5. ackIntEn = 1. In current implementations of using existing parallel ports, the interrupt generated may be either edge or level trigger type.

(18) Interrupt-driven Programmed I/O

It is also possible to use an interrupt-driven programmed I/O to execute either ECP or parallel port FIFOs. An interrupt will occur in the forward direction when serviceIntr is 0 and the number of free PWords in the FIFO is equal to or greater than writeIntrThreshold. If either of these conditions is not met, it may be filled with writeIntrThreshold PWords. An interrupt will occur in the reverse direction when serviceIntr is 0 and the number of available PWords in the FIFO is equal to readIntrThreshold. If it is full, the FIFO can be completely emptied in a single burst. If it is not full, only a number of PWords equal to readIntrThreshold may be read from the FIFO in a single burst. In the Test mode, software can determine the values of writeIntrThreshold, readIntrThreshold, and FIFO depth while accessing the FIFO.

Any PC LPC bus implementation that is adjusted to expedite DMA or I/O transfer must ensure that the bandwidth on ISA is maintained on the interface. Although the LPC (even PCI) bus of PC cannot be directly controlled, the interface bandwidth of ECP port can be constrained to perform at the optimum speed.

(19) Standard Parallel Port

In the forward direction with DMA, the standard parallel port is run at or close to the permitted peak bandwidth of 500 KB/sec. The state machine does not examine nAck, but just begins the next DMA based on the Busy signal.

9.11 Keyboard Controller (KBC)

The keyboard controller is implemented using an 8-bit microcontroller that is capable of executing the 8042 instruction set. For general information, please refer to the description of the 8042 in the 8-bit controller handbook. In addition, the microcontroller can enter the power-down mode by executing two types of power-down instructions.

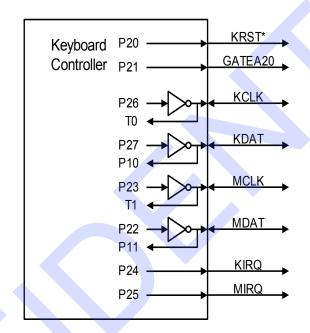


Figure 9-10. Keyboard and Mouse Interface

9.11.1 Host Interface

The keyboard controller interfaces with the system through the 8042 style host interface. The following table shows how the interface decodes the control signals.

Host Address Note	R/W*	Function
60h	R	READ DATA
60h	W	WRITE DATA, (Clear F1)
64h	R	READ Status
64h	W	WRITE Command, (Set F1)

Table 9-46. Data Register READ/WRITE Controls

Note:

These are the default values of LDN5, 60h and 61h (DATA); LDN5, 62h and 63h (Command). All these registers are programmable.

READ DATA: This is an 8-bit **read only** register. When read, the KIRQ output is cleared and OBF flag in the status register is cleared.

WRITE DATA: This is an 8-bit write only register. When written, the F1 flag of the Status register is cleared

Functional Description

and the IBF bit is set.

READ Status: This is an 8-bit **read only** register. Refer to the description of the Status register for more information

WRITE Command: This is an 8-bit write only register. When written, both F1 and IBF flags of the Status register are set.

9.11.2 Data Registers and Status Register

The keyboard controller provides two data registers: one is DBIN for data input, and the other is DBOUT for data output. Both are 8-bit wide. A write (microcontroller) to the DBOUT will load Keyboard Data Read Buffer, set OBF flag and set the KIRQ output. A read (microcontroller) of the DBIN will read the data from the Keyboard Data or Command Write Buffer and clear the IBF flag.

The status register holds information concerning the status of the data registers, the internal flags, and some user-defined status bits. Please refer to Table 9-47. Status Register on page 155. The bit 0 OBF is set to "1" when the microcontroller writes data into DBOUT, and is cleared when the system initiates a DATA READ operation. The bit 1 IBF is set to "1" when the system initiates a WRITE operation, and is cleared when the microcontroller executes an "IN A, DBB" instruction. The F0 and F1 flags can be set or reset when the microcontroller executes clear and complement flag instructions. F1 also holds the system WRITE information when the system performs the WRITE operation.

Table 9-47. Status Register

7	6	5	4	3	2	1	0
ST7	ST6	ST5	ST4	F1	F0	IBF	OBF

9.11.3 Keyboard and Mouse Interface

KCLK is the keyboard clock pin. Its output is the inversion of pin P26 of the microcontroller, and the input of KCLK is connected to the T0 pin of the microcontroller. KDAT is the keyboard data pin; its output is the inversion of pin P27 of the microcontroller, and the input of KDAT is connected to the P10 of the microcontroller. MCLK is the mouse clock pin; its output is the inversion of pin P23 of the microcontroller, and the input of MCLK is connected to the T1 pin of the microcontroller. MDAT is the Mouse data pin; its output is the inversion of pin P22 of the microcontroller, and the input of MDAT is connected to the P11 of the microcontroller. KRST# is pin P20 of the microcontroller. GATEA20 is the pin P21 of the microcontroller. These two pins are used as software controlled or user defined outputs. External pull-ups may be required for these pins.

9.11.4 KIRQ and MIRQ

KIRQ is the interrupt request for the keyboard (Default IRQ1), and MIRQ is the interrupt request for the mouse (Default IRQ12). KIRQ is internally connected to P24 pin of the microcontroller, and MIRQ is internally connected to pin P25 of the microcontroller.

This page is intentionally left blank.

DC Electrical Characteristics

10. DC Electrical Characteristics

Absolute Maximum Ratings*

Applied Voltage-0.5V to 5.5V Input Voltage (Vi)-0.5V to VCC+0.5V Output Voltage (Vo)-0.5V to VCC + 0.3V Operation Temperature (Topt)0°C to +70°C Storage Temperature-55°C to +125°C Power Dissipation300mW

*Comments

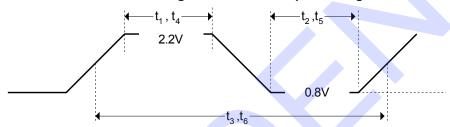
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics (VCC = $5V \pm 5\%$, Ta = 0° C to + 70° C)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
DO8 Buffer	r					
V_{OL}	Low Output Voltage	I _{OL} = 8 mA			0.4	V
V _{OH}	High Output Voltage	I _{OH} = -8 mA	2.4			V
DOD8 Buff	er			1		•
V_{OL}	Low Output Voltage	$I_{OL} = 8 \text{ mA}$			0.4	V
DO16 Buffe	er			1		•
V_{OL}	Low Output Voltage	I _{OL} = 16 mA			0.4	V
V_{OH}	High Output Voltage	I _{OH} = -16 mA	2.4			V
DO24 Buffe	er			1		•
V_{OL}	Low Output Voltage	I _{OL} = 24 mA			0.4	V
V _{OH}	High Output Voltage	I _{OH} = -16 mA	2.4			V
DO24L Buf	fer			1		
V_{OL}	Low Output Voltage	I _{OL} = 24 mA			0.4	V
V_{OH}	High Output Voltage	I _{OH} = -8 mA	2.4			V
DIO8 Type	Buffer			1		•
V_{OL}	Low Output Voltage	I _{OL} = 8 mA			0.4	V
V _{OH}	High Output Voltage	I _{OH} = -8 mA	2.4			V
V _{IL}	Low Input Voltage				0.8	V
V _{IH}	High Input Voltage		2.2			V
I _{IL}	Low Input Leakage	V _{IN} = 0		10		μА
l _{IH}	High Input Leakage	V _{IN} = VCC			-10	μА
l _{OZ}	3-state Leakage				20	μА

DC Electrical Characteristics (VCC = $5V \pm 5\%$, Ta = 0° C to + 70° C)[cont'd]

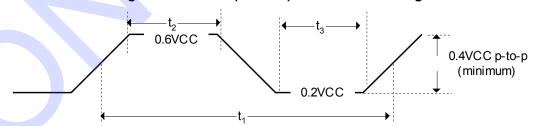
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
DIOD8 Type	e Buffer	•		•		
V_{OL}	Low Output Voltage	I _{OL} = 8 mA			0.4	V
V _{IL}	Low Input Voltage				0.8	V
V_{IH}	High Input Voltage		2.2			V
I _{IL}	Low Input Leakage	V _{IN} = 0		10		μΑ
I _{IH}	High Input Leakage	V _{IN} = VCC			-10	μА
I _{OZ}	3-state Leakage				20	μА
DIO16 Type	Buffer					
V_{OL}	Low Output Voltage	I _{OL} = 16 mA			0.4	V
V_{OH}	High Output Voltage	I _{OH} = -16 mA	2.4			V
V_{IL}	Low Input Voltage				0.8	V
V_{IH}	High Input Voltage		2.2			V
I_{1L}	Low Input Leakage	V _{IN} = 0		10		μА
I _{IH}	High Input Leakage	V _{IN} = VCC			-10	μА
I _{OZ}	3-state Leakage				20	μА
DIOD16 Typ	oe Buffer					
V_{OL}	Low Output Voltage	I _{OL} = 16 mA			0.4	V
V_{IL}	Low Input Voltage				8.0	V
V_{IH}	High Input Voltage		2.2			V
I_{IL}	Low Input Leakage	V _{IN} = 0		10		μА
I _{IH}	High Input Leakage	V _{IN} = VCC			-10	μА
I _{OZ}	3-state Leakage				20	μА
DIO24 Type	Buffer		•	•		
V_{OL}	Low Output Voltage	I _{OL} = 24 mA			0.4	V
V_{OH}	High Output Voltage	I _{OH} = -16 mA	2.4			V
V_{IL}	Low Input Voltage				8.0	V
V_{IH}	High Input Voltage		2.2			V
I _{IL}	Low Input Leakage	V _{IN} = 0		10		μА
I _{IH}	High Input Leakage	V _{IN} = VCC			-10	μА
l _{OZ}	3-state Leakage				20	μА
DI Type Bu	ffer					
V _{IL}	Low Input Voltage				0.8	V
V _{IH}	High Input Voltage		2.2			V
I _{IL}	Low Input Leakage	V _{IN} = 0		10		μА
I _{IH}	High Input Leakage	V _{IN} = VCC			-10	μА


11. AC Characteristics (VCC = 5V \pm 5%, Ta = 0°C to + 70°C)

11.1 Clock Input Timings

Symbol	Parameter	Min.	Тур.	Max.	Unit
t ₁	Clock High Pulse Width when CLKIN=48 MHz ¹	8			nsec
t ₂	Clock Low Pulse Width when CLKIN=48 MHz ¹	8			nsec
t ₃	Clock Period when CLKIN=48 MHz ¹	20	21	22	nsec
t_4	Clock High Pulse Width when CLKIN=24 MHz 1	18			nsec
t ₅	Clock Low Pulse Width when CLKIN=24 MHz ¹	18			nsec
t ₆	Clock Period when CLKIN=24 MHz ¹	40	42	44	nsec

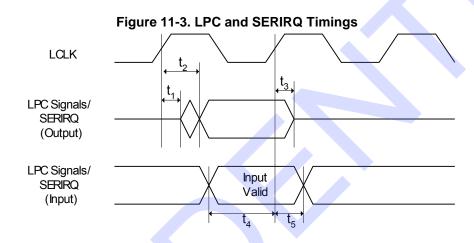
Not tested. Guaranteed by design.


Figure 11-1. Clock Input Timings

11.2 LCLK (PCICLK) and LRESET Timings

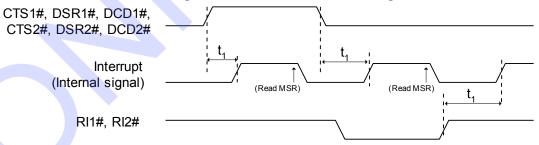
Symbol	Parameter	Min.	Тур.	Max.	Unit
t ₁	LCLK Cycle Time	28			nsec
t ₂	LCLK High Time	11			nsec
t ₃	LCLK Low Time	11			nsec
t_4	LRESET# Low Pulse Width	1.5			μsec

Figure 11-2. LCLK (PCICLK) and LRESET Timings



www.ite.com.tw 159 IT8781F V0.2.2

11.3 LPC and SERIRQ Timings


Symbol	Parameter	Min.	Тур.	Max.	Unit
t ₁	Float to Active Delay	3			nsec
t ₂	Output Valid Delay			12	nsec
t ₃	Active to Float Delay			6	nsec
t_4	Input Setup Time	9			nsec
t ₅	Input Hold Time	3			nsec

11.4 Modem Control Timings

Symbol	Parameter	Min.	Тур.	Max.	Unit
t ₁	Float to active delay			40	nsec

Figure 11-4. Modem Control Timings

11.5 Floppy Disk Drive Timings

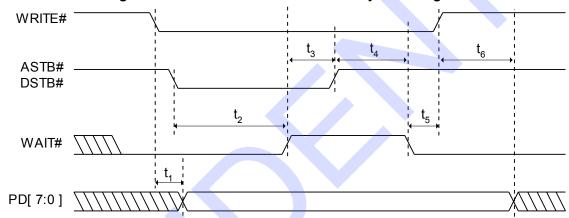
Symbol	Parameter	Min.	Тур.	Max.	Unit
t ₁	DIR# active to STEP# low		4X t _{mclk} Note1		nsec
t_2	STEP# active time (low)		24X t _{mclk}		nsec
t_3	DIR# hold time after STEP#		t _{SRT} Note2		msec
t_4	STEP# cycle time		t _{SRT}		msec
t ₅	INDEX# low pulse width	2X t _{mclk}			nsec
t ₆	RDATA# low pulse width	40			nsec
t ₇	WDATA# low pulse width		1X t _{mclk}		nsec

Note 1: t_{mclk} is the cycle of main clock for the microcontroller of FDC. t_{mclk} =8M/ 4M/ 2.4M/ 2M for 1M/ 500K/ 300K/ 250 Kbps transfer rates respectively.

Note 2: t_{SRT} is the cycle of the Step Rate Time. Please refer to the functional description of the SPECIFY command of the FDC.

DIR# t_{2} t_{4} STEP#

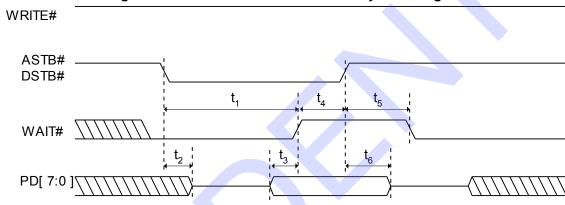
INDEX# t_{6} RDATA# t_{7}


Figure 11-5. Floppy Disk Drive Timings

11.6 EPP Address or Data Write Cycle Timings

Symbol	Parameter	Min.	Тур.	Max.	Unit
t ₁	WRITE# asserted to PD[7:0] valid			50	nsec
t ₂	ASTB# or DSTB# asserted to WAIT# de-asserted	0		10	nsec
t ₃	WAIT# de-asserted to ASTB# or DSTB# de-asserted	65		135	nsec
t_{4}	ASTB# or DSTB# de-asserted to WAIT# asserted	0			nsec
t ₅	WAIT# asserted to WRITE# de-asserted	65			nsec
t ₆	PD[7:0] invalid after WRITE# de-asserted	0			nsec

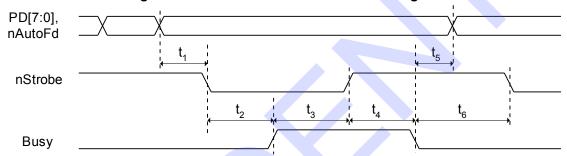
Figure 11-6. EPP Address or Data Write Cycle Timings



11.7 EPP Address or Data Read Cycle Timings

Symbol	Parameter	Min.	Тур.	Max.	Unit
t ₁	ASTB# or DSTB# asserted to WAIT# de-asserted			10	nsec
t ₂	ASTB# or DSTB# asserted to PD[7:0] Hi-Z	0			nsec
t ₃	PD[7:0] valid to WAIT# de-asserted	0			nsec
t ₄	WAIT# de-asserted to ASTB# or DSTB# de-asserted	65		135	nsec
t ₅	ASTB# or DSTB# de-asserted to WAIT# asserted	0			nsec
t ₆	PD[7:0] invalid after ASTB# or DSTB# de-asserted	20			nsec

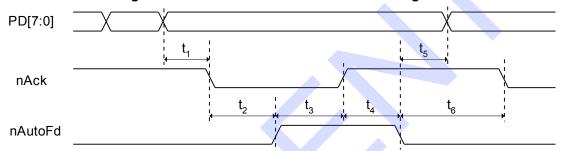
Figure 11-7. EPP Address or Data Read Cycle Timings



11.8 ECP Parallel Port Forward Timings

Symbol	Parameter	Min.	Тур.	Max.	Unit
t ₁	PD[7:0] and nAutoFd valid to nStrobe asserted			50	nsec
t ₂	nStrobe asserted to Busy asserted	0			nsec
t ₃	Busy asserted to nStrobe de-asserted	70		170	nsec
t_{4}	nStrobe de-asserted to Busy de-asserted	0			nsec
t ₅	Busy de-asserted to PD[7:0] and nAutoFd changed	80		180	nsec
t ₆	Busy de-asserted to nStrobe asserted	70		170	nsec

Figure 11-8. ECP Parallel Port Forward Timings



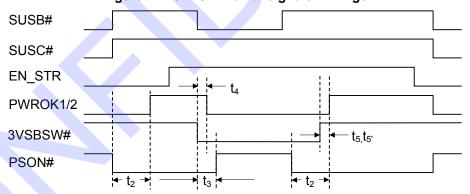
11.9 ECP Parallel Port Backward Timings

Symbol	Parameter	Min.	Тур.	Max.	Unit
t ₁	PD[7:0] valid to nAck asserted	0			nsec
t ₂	nAck asserted to nAutoFd asserted	70		170	nsec
t ₃	nAutoFd asserted to nAck de-asserted	0			nsec
$t_{\scriptscriptstyle{4}}$	nAck de-asserted to nAutoFd de-asserted	70		170	nsec
t ₅	nAutoFd de-asserted to PD[7:0] changed	0			nsec
t ₆	nAutoFd de-asserted to nAck asserted	0			nsec

Figure 11-9. ECP Parallel Port Backward Timings

11.10 RSMRST#, PWROK, and ACPI Power Control Signals Timings

Symbol	Parameter	Min.	Тур.	Max.	Unit
t ₁	RSMRST# de-actives delay from VCCH5V=4V	13	16	19	msec
t ₂	PWROK active delay from VCC5V=4V	350	400	450	msec
t ₃	Overlap of PSON# and 3VSBSW#	8.5	10	11.5	msec
t_{4}	3VSBAW# rising to PWROK delay time (2A bit 0 =0)		1us		Usec
t ₄	3VSBAW# rising to PWROK delay time (2A bit 0 =1)	120	140	160	Msec
t ₅	3VSBAW# falling to PWROK delay time		1	2	msec

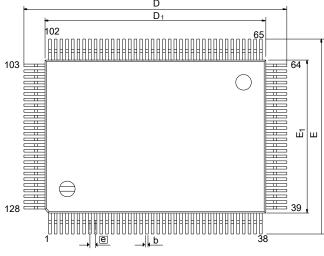

Figure 11-11. RSMRST# Timings

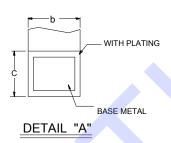
VCCH5V		VCCH5V=4+- 0.2V			VC	CH5V=3.5+- 0.2V	
RSMRST#	-	<	t1	>			

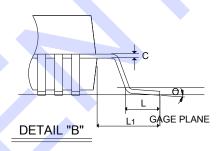
Figure 11-12. PWROK Timings

VCC5V	VCC5V=	4+- 0.2V				V	CC5V=3.	5+- 0.2V	\
RESETCON#					$\overline{}$		/		
PWROK	<	t2		>					

Figure 11-13. ACPI Power signals Timings




unit: inches/mm



12. Package Information

QFP 128L Outline Dimensions

		SEE DETAIL "B"
A A2		
y 8	SEATING	PLANE DETAIL "A"

Cumbal	Dimen	sion in	inches	Dime	nsion ii	n mm
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	ď	1	0.134	-	1	3.40
A_1	0.010	-	-	0.25	1	-
A ₂	0.107	0.112	0.117	2.73	2.85	2.97
b	0.007	0.009	0.011	0.17	0.22	0.27
С	0.004	1	0.008	0.09	1	0.20
D	0.906	0.913	0.921	23.00	23.20	23.40
D_1	0.783	0.787	0.791	19.90	20.00	20.10
E	0.669	0.677	0.685	17.00	17.20	17.40
E ₁	0.547	0.551	0.555	13.90	14.00	14.10
e	0.	.020 BS	С	(0.5 BSC	;
L	0.029	0.035	0.041	0.73	0.88	1.03
L ₁	0.	.063 BS	С	1	2	
у	-	-	0.004	-	-	0.10
θ	0 °	-	7 °	0 °	-	7 °

Notes:

- 1. Dimensions D_1 and E_1 do not include mold protrusion. But mold mismatch is included.
- 2. Dimensions b does not include dambar protrusion.
- 3. Controlling dimension: millimeter

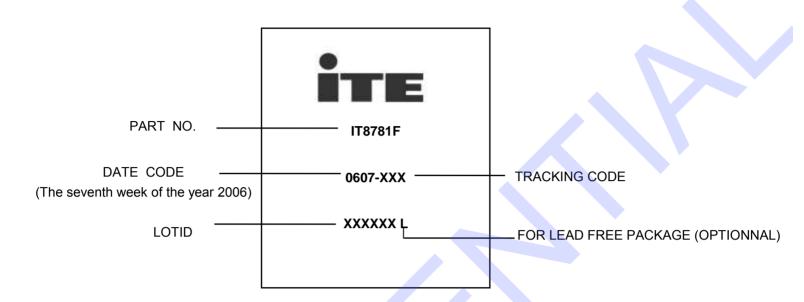
DI-QFP128(14*20)v2

This page is intentionally left blank.

13. Ordering Information

Part No.	Package
IT8781F	128 QFP

All components provided are RoHS-compliant (100% Green Available).



This page is intentionally left blank.

14. Top Marking Information

ITE TECH. INC. TERMS AND CONDITIONS OF SALE (Rev: 2005)

PARTIES

ITE Tech. Inc. ("Seller") is a company headquartered in Taiwan, Republic of China, and incorporated under laws of Republic of China, Buyer is a company or an entity, purchasing product from ITE Tech. Inc..

1. ACCEPTANCE OF TERMS

BUYER ACCEPTS THESE TERMS (i) BY WRITTEN ACCEPTANCE (BY PURCHASE ORDER OR OTHERWISE), OR (ii) BY FAILURE TO RETURN GOODS DESCRIBED ON THE FACE OF THE PACKING LIST WITHIN FIVE DAYS OF

DELIVERY

Delivery will be made Free Carrier (Incoterms), Seller's warehouse, Science-ed Industrial Park, Hsinchu, Taiwan.

Title to the goods and the entire risk will pass to Buyer upon delivery to carrier. Shipments are subject to availability. Seller shall make every reasonable effort to meet the date(s) quoted or acknowledged; and if Seller makes such effort, Seller

will not be liable for any delays. TERMS OF PAYMENT

(a) Terms are as stated on Seller's quotation, or if none are stated, net thirty (30) days. Accounts past due will incur a monthly charge at the rate of one percent (1%) per month (or, if less, the maximum allowed by applicable law) to cover servicing

Seller reserves the right to change credit terms at any time in its sole discretion.

LIMITED WARRANTY

Seller warrants that the goods sold will be free from defects in material and workmanship and comply with Seller's applicable published specifications for a period of ninety (90) days from the date of Seller's delivery. Within the warranty period and by obtaining a return number from Seller, Buyer may request replacement or repair or defective goods.

O) Goods or parts which have been subject to abuse (including without limitation

repeated or extended exposure to conditions at or near the limits of applicable absolute ratings) misuse, accident, alteration, neglect, or unauthorized repair or improper application are not covered by any warranty. No warranty is made with respect to custom products or goods produced to Buyer's specifications (unless

specifically stated in a writing signed by Seller).

(c) No warranty is made with respect to goods used in devices intended for use in applications where failure to perform when properly used can reasonably be expected to result in significant injury (including, without limitation, navigation, aviation or nuclear equipment, or for surgical implant or to support or sustain life) and Buyer agrees to indemnify, defend, and hold harmless Seller from all claims, damages and liabilities arising out of any such uses.

(d) This Paragraph 4 is the only warranty by Seller with respect to goods and may not be modified or amended except in writing signed by an authorized officer of Selle

not be modified or amended except in writing signed by an autionized office to set (e). Buyer acknowledges and agrees that it is not relying on any applications, diagrams or circuits contained in any literature, and Buyer will test all parts and applications under extended field and laboratory conditions. Notwithstanding any cross-reference or any statements of compatibility, functionality, interchangeability, and the like, the goods may differ from similar goods from other vendors in and the like, the gloods had wither from similar goods from other ventions in performance, function or operation, and in areas not contained in the written specifications, or as to ranges and conditions outside such specifications; and Buyer agrees that there are no warranties and that Seller is not responsible for such things. (f) EXCEPT AS PROVIDED ABOVE, SELLER MAKES NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY; AND SELLER EXPRESSLY EXCLUDES AND DISCLAIMS ANY WARRANTY OR CONDITION OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE OR

5. LIMITATION OF LIABILITY

(a) Seller will not be liable for any loss, damage or penalty resulting from causes beyond its reasonable control, including but not limited to delay by others, force majeure, acts of God, or labor conditions. In any such event, the date(s) for Seller's performance will be deemed extended for a period equal to any delay resulting.

(b) THE LIABILITY OF SELLER ARISING OUT OF THE CONTRACT OR ANY

GOODS SOLD WILL BE LIMITED TO REFUND OF THE PURCHASE PRICE OR REPLACEMENT OF PURCHASED GOODS (RETURNED TO SELLER FREIGHT PRE-PAID) OR, WITH SELLER'S PRIOR WRITTEN CONSENT, REPAIR OF PURCHASED GOODS.

Buyer will not return any goods without first obtaining a customer return order number

(d) AS A SEPARATE LIMITATION, IN NO EVENT WILL SELLER BE LIABLE FOR COSTS OF SUBSTITUTE GOODS; FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL OR INDIRECT DAMAGES; OR LOSS OF USE, OPPORTUNITY, MARKET POTENTIAL, AND/OR PROFIT ON ANY THEORY (CONTRACT, TORT, FROM THIRD PARTY CLAIMS OR OTHERWISE). THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY

(e) No action against Seller, whether for breach, indemnification, contribution or otherwise, shall be commenced more than one year after the cause of action has accrued, or more than one year after either the Buyer, user or other person knew or with reasonable diligence should have known of the matter or of any claim of dissatisfaction or defect involved; and no such claim may be brought unless Seller has first been given commercially reasonable notice, a full written explanation of all pertinent details, and a good faith opportunity to resolve the matter.

(f) BUYER EXPRESSLY AGREES TO THE LIMITATIONS OF THIS PARAGRAPH 5 AND TO THEIR REASONABLENESS.

SUBSTITUTIONS AND MODIFICATIONS

Seller may at any time make substitutions for product ordered which do not materially and adversely affect overall performance with the then current specifications in the typical and intended use. Seller reserves the right to hall deliveries and shipments and alter specifications and prices without notice. Buyer shall verify that the literature and information is current before purchasing

CANCELLATION

The purchase contract may not be canceled by Buyer except with written consent by Seller and Buyer's payment of reasonable cancellation charges (including but not be limited to expenses already incurred for labor and material, overhead, commitments made by Seller, and a reasonable profit).

INDEMNIFICATION

Seller will, at its own expense, assist Buyer with technical support and information in connection with any claim that any parts as shipped by Seller under the purchase order infringe any valid and enforceable copyright, or trademark, provided however, that Buyer (i) gives immediate written notice to Seller, (ii) permits Seller to participate and to defend if Seller requests to do so, and (iii) gives Seller all needed information, assistance and authority. However, Seller will not be responsible for infringements resulting from anything not entirely manufactured by Seller, or from any combination with products, equipment, or materials not furnished by Seller. Seller will have no liability with respect to intellectual property matters arising out of products

made to Buyer's specifications, code, or designs.

Except as expressly stated in this Paragraph 8 or in another writing signed by an authorized officer, Seller makes no representations and/or warranties with respect to authorized officer, Seller makes no representations and/or warranties with respect to intellectual and/or industrial property and/or with respect to claims of infringement. Except as to claims Seller agrees in writing to defend, BUYER WILL INDEMNIFY, DEFEND AND HOLD HARMLESS SELLER FROM ALL CLAIMS, COSTS, LOSSES, AND DAMAGES (INCLUDING ATTORNEYS FEES) AGAINST AND/OR ARISING OUT OF GOODS SOLD AND/OR SHIPPED HEREUNDER.

NO CONFIDENTIAL INFORMATION

Seller shall have no obligation to hold any information in confidence except as provided in a separate non-disclosure agreement signed by both parties.

10. ENTIRE AGREEMENT

(a) These terms and conditions are the entire agreement and the only representations and understandings between Seller and Buyer, and no addition, deletion or modification shall be binding on Seller unless expressly agreed to in written and signed by an officer of Seller.

(b) Buyer is not relying upon any warranty or representation except for those

specifically stated here

11. APPLICABLE LAW

The contract and all performance and disputes arising out of or relating to goods involved will be governed by the laws of R.O.C. (Taiwan, Republic of China), without reference to the U.N. Convention on Contracts for the International Sale of Goods or to conflict of laws principles. Buyer agrees at its sole expense to comply with all applicable laws in connection with the purchase, use or sale of the goods provided hereunder and to indemnify Seller from any failure by Buyer to so comply. Without limiting the foregoing, Buyer certifies that no technical data or direct products thereof will be made available or re-exported, directly or indirectly, to any country to which such export or access is prohibited or restricted under R.O.C. laws or U.S. laws or regulations, unless prior authorization is obtained from the appropriate officials and agencies of the government as required under R.O.C. or U.S. laws or regulations.

12. JURISDICTION AND VENUE
The courts located in Hsinchu, Taiwan, Republic of China, will have the sole and exclusive jurisdiction and venue over any dispute arising out of or relating to the contract or any sale of goods hereunder. Buyer hereby consents to the jurisdiction of such courts.

13. ATTORNEYS' FEES
Reasonable attorneys' fees and costs will be awarded to the prevailing party in the
event of litigation involving and/or relating to the enforcement or interpretation of the contract
and/or any goods sold under it.